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Abstract

We study independent private values auction environments in which the auctioneer’s revenue depends non-
linearly on bidders’ interim winning probabilities. Our framework accommodates heterogeneity among bidders
and places no ad hoc constraints on the mechanisms available to the auctioneer. Within this general setting, we
show that feasibility of interim winning probabilities can be tested along a unidimensional curve—the principal
curve—and use this insight to explicitly characterize the extreme points of the feasible set. We then combine our
results on feasibility and extremality to solve for the optimal auction under a natural regularity condition. We
show that the optimal mechanism allocates the good based on principal virtual values, which extend Myerson’s
virtual values to nonlinear settings and are constructed to equalize bidders’ marginal revenue along the principal
curve. We apply our approach to the classical linear model, settings with endogenous valuations due to ex ante
investments, and settings with non-expected utility preferences, where previous results were largely limited either
to symmetric environments with symmetric allocations or to two-bidder environments.

1 Introduction

Auctions are among the most widely used market institutions. Governments use them to allocate spectrum licenses
and procurement contracts; firms employ them to acquire or liquidate inputs; and millions of individuals participate
daily on online platforms. A central question in auction theory is how to design mechanisms that maximize an
auctioneer’s objective, such as expected revenue.

The benchmark case of independent private values (IPV) with linear utilities is well understood following My-
erson [1981]. Myerson’s celebrated analysis shows that in this environment the optimal mechanism awards the good
to the bidder with the highest nonnegative virtual value under mild regularity conditions. A key feature that makes
this analysis tractable is that expected revenue is linear in bidders’ interim winning probabilities. This linearity allows
the auctioneer’s problem to be solved pointwise over feasible allocations in regular environments when ironing is
not needed.

Much less is known once the auctioneer’s objective departs from linearity. Nonlinear dependence on interim
winning probabilities arises naturally in economically important settings—for instance, when bidders undertake ex
ante investments that affect valuations, as in models of endogenous valuations (Gershkov et al. [2021]), or when
bidders have non-expected-utility preferences such as constant relative risk aversion (CRA) (Gershkov et al. [2022]).
In such environments, because the auctioneer’s revenue depends nonlinearly on interim winning probabilities, the
convenient pointwise maximization of the linear benchmark is no longer available. As a result, classical methods
break down, and the analysis of optimal auctions becomes substantially more complex.
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This paper develops a unified framework for characterizing optimal auctions when the auctioneer’s expected
revenue can be written in reduced form as an integral of bidder-specific revenue terms that may be nonlinear in in-
terim winning probabilities. We allow for full asymmetry across bidders and do not impose any ad hoc restrictions
on the mechanisms available to the auctioneer. Our framework accommodates a wide range of economic environ-
ments, including the linear IPV model, settings with endogenous valuations, and settings with CRA preferences
cited above.

The core challenge in nonlinear environments is the loss of separability: the auctioneer’s problem no longer de-
composes across types, and allocations cannot be chosen type-by-type. Making progress therefore requires resolving
three intertwined challenges.

Feasibility. Bidders’ interim winning probabilities must be consistent with some ex post allocation, and charac-
terizing this consistency requires checking Border’s condition. This condition provides a set of necessary and suffi-
cient inequalities, but this set is high-dimensional—one inequality for every possible cutoff vector of types. While
tractable for symmetric auctions or with two bidders, it quickly becomes unmanageable as we move to asymmetric
auctions with a larger number of bidders. This leaves little hope of solving the fully constrained problem directly.

Extremality. The set of feasible reduced forms—tuples of bidders’ interim winning probabilities—is convex.
Consequently, when the auctioneer’s objective is convex—as in many endogenous-valuation environments—an op-
timum is attained at an extreme point of the feasible set. A tractable description of extremal reduced forms would
therefore sharply restrict the set of candidates and reduce the subsequent maximization problem to a much lower-
dimensional search. Yet, existing characterizations are largely confined to symmetric settings or to two bidders, leav-
ing the structure of extreme points poorly understood in richer settings.

Optimality. Ultimately, the core difficulty is that nonlinearity destroys the pointwise structure of the linear
benchmark. Feasibility and extremality help identify the relevant constraint set and restrict attention to plausible
candidates, but the remaining task is still to optimize a nonlinear objective over that set. Doing so requires a method-
ology that both solves the auctioneer’s problem and delivers sharp structural insights about the optimal auction.

In this paper, we address these challenges by developing new characterizations for feasibility and extremality and
then leveraging them to solve the auctioneer’s problem.

Our first contribution is a new representation of feasibility that collapses Border’s high-dimensional family of
constraints to a unidimensional test. We show that for any reduced form there exists a canonical principal curve
inside the unit cube with the property that Border’s inequalities hold everywhere if and only if they hold along this
single curve. This reduction makes feasibility straightforward to verify even in fully asymmetric environments with
many bidders.

Our second contribution is a sharp characterization of extremality. Building on our feasibility representation,
we show that a reduced form is extremal precisely when Border’s inequalities bind along its principal curve. This
criterion dramatically simplifies the auctioneer’s problem in environments where the optimum is known to be ex-
tremal. It also clarifies how to induce reduced forms through ex post allocations. Specifically, we show that every
extremal reduced form can be implemented by a simple score allocation. In a score allocation, each bidder’s type is
mapped into a unidimensional score; the good is awarded to the bidder with the highest nonnegative score; and
ties occur with probability zero. We prove that score allocations are exactly the mechanisms that generate extremal
reduced forms. This yields a sharper form of the classical equivalence between Bayesian and dominant-strategy im-
plementation originally established by Manelli and Vincent [2010]. In particular, we establish that any reduced form
is implementable as a mixture of deterministic, dominant-strategy incentive compatible, and nonbossy allocations,
in the sense of Satterthwaite and Sonnenschein [1981].

Our third contribution concerns optimality in nonlinear environments. We reformulate the auctioneer’s prob-
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lem as a continuous-time optimal control problem that builds the principal curve over “time”, moving from high to
low types. In this representation, the auctioneer chooses how quickly to allocate winning probability to each bid-
der, subject to a dynamic feasibility constraint that captures Border’s condition along the curve. This reformulation
opens the door to standard tools from control theory and yields structural and economic insights that were un-
available before. Specifically, the optimality conditions reveal a key organizing principle: on segments where mono-
tonicity does not bind (i.e., where no ironing is required), the optimal principal curve equalizes bidders’ marginal
revenues. Using this insight, we completely solve for the optimum in regular environments where ironing is not
required.

In regular environments where the optimum is extremal, marginal revenue equalization delivers a complete char-
acterization of the optimal auction, which takes the form of a score allocation. Each bidder’s score is a principal vir-
tual value, constructed to equalize bidders’ marginal revenues along the optimal principal curve. In linear settings,
principal virtual values coincide with Myerson’s virtual values since bidders’ marginal revenues do not depend on
their interim winning probabilities. In nonlinear environments, these scores depart from Myerson’s virtual values
because they incorporate the shadow cost of feasibility: increasing one bidder’s interim winning probability neces-
sarily comes at the expense of others and therefore changes their marginal revenues.

We show how this characterization applies to the endogenous-valuation model, where bidders choose ex ante
investments that affect their valuations. In this environment, interim winning probabilities matter not only for rent
extraction, but also because they determine the return to investing. Any bidder with a positive interim winning
probability has an incentive to invest even though only one ultimately wins, so investment costs are largely dupli-
cated. The optimal auction departs from Myerson’s auction by shifting winning probability toward bidders with
higher investment returns and away from bidders with lower investment returns, until bidders’ marginal revenues
are equalized along the optimal principal curve. Relative to Myerson’s auction, this reallocation reduces excessive
duplication of investment costs, thereby increasing the auctioneer’s expected revenue.

We then extend the analysis to regular environments in which the optimum is not extremal. This case arises
naturally when the auctioneer’s objective exhibits “satiation” in interim winning probabilities, as in settings with
risk-averse bidders. In such environments, the score ranking implied by principal virtual values remains informa-
tive about who should receive probability, but it no longer pins down the amount to allocate. In particular, at low
types the marginal revenue from awarding the full unit to the top-ranked bidder can be negative. Rather than ex-
cluding such types from trade altogether, the auctioneer can allocate a strictly positive fraction, increasing it until
marginal revenue reaches zero. We formalize this behavior through fractional score allocations, which preserve the
score ranking while allowing the winning fraction to vary with the bidder’s type.

Finally, we illustrate the implications of this characterization in the CRA model, where awarding a fractional
unit to risk-averse bidders at the bottom of the type distribution is beneficial for the auctioneer because it low-
ers informational rents while generating only small efficiency losses. In a CRA application with two groups of
bidders—risk-neutral and risk-averse—we derive a sharp comparative-statics insight. The optimal auction favors
the risk-averse bidders at low types and the risk-neutral bidders at high types. This echoes Myerson’s logic that the
optimal auction should tilt toward ex ante “weak” bidders to intensify competition; however, the key subtlety in the
nonlinear CRA model is that who is “weak” depends on bidders’ interim winning probabilities. At high interim
winning probabilities, the risk-averse bidders are effectively stronger because they are willing to pay an additional
risk premium to secure the good with near certainty. At low interim winning probabilities, this ranking is reversed.
Accordingly, the optimal auction should be biased in favor of risk-averse bidders for low allocations (and thus low
types) and against risk-averse bidders for high allocations (and thus high types). As we explain, this reversal is a direct
implication of marginal revenue equalization along the optimal principal curve.
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1.1 Relation to literature

A substantial body of literature has studied feasibility, extremality, and optimality of reduced forms. Below, we
describe the key existing contributions and relate our results to them.

Feasibility. In a classic result, Border [1991], building on Maskin and Riley [1984] and Matthews [1984], charac-
terized the set of feasible symmetric reduced forms—that is, symmetric interim winning probabilities inducible by
some ex post allocation—via a unidimensional family of linear inequalities. Border [2007] and Mierendorff [2011]
generalized this result to asymmetric reduced forms, where feasibility is described by a family of inequalities whose
dimension grows with the number of bidders. Che et al. [2013], in turn, extended these results to multi unit auc-
tion settings with capacity constraints. Hart and Reny [2015] related Border’s conditions to second-order stochastic
dominance, and He et al. [2025] showed that Border-type inequalities can also characterize the set of feasible belief
distributions generated by private-private information structures.

The closest paper to ours regarding feasibility in auction settings is Cai et al. [2018], who showed that in finite
(potentially only partially ordered) type spaces one can reduce the family of asymmetric Border inequalities to one
dimension. Our result is complementary to theirs: it relies on additional structure—continuous, unidimensional,
linearly ordered types and monotone interim winning probabilities—but delivers a sharper characterization. In this
setting, we characterize feasibility via a unidimensional monotone curve, which we describe in closed form through
an explicit transformation of reduced forms.

Extremality. Since a quasiconvex functional attains its maximum at an extreme point of that set1, characterizing
extreme points has become an increasingly powerful approach to solving many optimization problems of economic
interest at once. In a landmark contribution, Kleiner et al. [2021] characterized extreme points of the set of monotone
functions that majorize, or are majorized by, a given monotone function. This yielded, aside from applications
to contests, optimal persuasion, and delegation, an immediate description of extreme points of the set of feasible
symmetric reduced forms, since the symmetric Border constraint could be viewed as a majorization constraint.2

Extreme points of asymmetric reduced forms in auction settings are still not fully understood. A notable con-
tribution is Manelli and Vincent [2010], who characterized some extremal asymmetric reduced forms—those that
are step functions—and used this description to establish the BIC–DIC equivalence. More recently, Yang and Yang
[2025] provided an equivalent characterization of extremal asymmetric reduced forms in the two-bidder case. Their
approach differs from ours: it characterizes extreme points of the set of rationalizable tuples of monotone func-
tions. While the connection between rationalizability and majorization is transparent with two bidders, it is unclear
how to extend it to characterize extremal reduced forms when the number of bidders exceeds two. In contrast, our
approach delivers an explicit description of all extreme points irrespective of the number of bidders.

A few other papers used the extreme-points approach to solve problems of economic significance. Among them,
Manelli and Vincent [2007] employed it to study multidimensional screening. Nikzad [2023] and Candogan and
Strack [2023] characterized extreme points of the same set as in Kleiner et al. [2021] but with additional linear con-
straints and applied this approach to study optimal information disclosure. Arieli et al. [2023] described extreme
points of the set of mean-preserving contractions of a given prior. Kleiner et al. [2024] studied extreme points of the
set of fusions, the multidimensional analog of mean-preserving contractions, and Lahr and Niemeyer [2024] studied
extreme points in multidimensional monopolistic screening settings. Finally, Yang and Zentefis [2024] characterized
extreme points of the set of monotone functions bounded by two given monotone functions and applied this to
political economy, persuasion, the psychology of judgment, and security design.

Optimality. As noted above, once the objective is nonlinear in interim winning probabilities, the optimization
1This holds under compactness and continuity by a generalization of Bauer’s maximum principle to quasiconvex functionals; see Ball [2023].
2Kleiner et al. [2021] also covered multiunit symmetric environments.
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problem becomes hard because pointwise optimization is no longer available. Despite these difficulties, several pa-
pers have made substantial progress. Gershkov et al. [2021] leveraged the Fan–Lorentz inequality to solve for the
optimal symmetric allocation with many goods when valuations are endogenous and provided conditions under
which the globally optimal reduced form is symmetric in two-bidder environments; Andreyanov et al. [2024] pro-
vided analysis for a related setting with contractible actions. Zhang [2017] characterized the optimum in the sym-
metric two-bidder endogenous-valuations model with quadratic costs, whereas Andreyanov et al. [2026] solved for
the optimum in general symmetric two-bidder settings with endogenous valuations. Finally, Gershkov et al. [2022]
characterized the optimal mechanism in symmetric environments with non-expected-utility bidders exhibiting con-
stant relative risk aversion. Our approach covers these applications and unifies and extends the analysis to general
asymmetric settings.

1.2 Structure of the paper

The paper contains several distinct results, and to help the reader navigate, we indicate key theorems and proposi-
tions in brackets throughout this outline. Because the main objects and transformations we introduce are nonstan-
dard, and later arguments rely on this shared language, we recommend reading the paper linearly.

Section 2 introduces the model and explains how several leading auction environments fit into our framework.
Section 3 presents an illustrative example that previews the economics of the optimal mechanism.

Sections 5–7 develop the main methodological results. Specifically, Section 5 reduces Border’s high-dimensional
feasibility constraints to a unidimensional test along the principal curve (Theorem 1). Section 6 characterizes ex-
tremal reduced forms and links them to implementation via score allocations (Theorems 2 and 3). Section 7 re-
formulates the auctioneer’s problem as an optimal control problem and derives the marginal revenue equalization
condition that organizes the analysis of optimal auctions that follows (Proposition 1 and Proposition 2).

Sections 8 and 9 apply these tools to characterize optimal auctions in regular environments, distinguishing be-
tween the extremal and non-extremal cases (Theorems 4 and 5).

Section 10 concludes, and the appendix collects proofs and supplementary results.

2 Setting

We consider an auction environment with n bidders, indexed by i = 1, . . . , n, and a single auctioneer who sells
one indivisible unit of a good. Each bidder i has a private valuation that depends on a unidimensional type θi ∈
Θi ⊂ R+, where Θi is a compact interval. The type θi is drawn from a distribution Fi on Θi that admits a strictly
positive and continuous density denoted by fi. Types are independently distributed across bidders, although the
marginal distributions may differ. We use boldface for vectors of individual variables, e.g., θ = (θ1, . . . , θn) stands
for a type profile.

Let Θ = Θ1 × · · · × Θn denote the set of all possible type profiles. An allocation is a function z =

(z1, . . . , zn) : Θ → [0, 1]n satisfying

n∑
i=1

zi(θ) ≤ 1 (1)

for all type profiles θ ∈ Θ. Here, zi(θ) represents the probability that bidder i receives the good when the type
profile is θ, and the constraint simply means that the auctioneer can sell at most one unit. For bidder i, the interim
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winning probability given their type θi is defined by

xi(θi) = E[zi | θi], (2)

where the expectation is taken with respect to the independent draws of the other bidders’ types.
The setting described thus far corresponds to the standard IPV auction model with linear utilities. It is well

known that in this setting, the auctioneer’s expected revenue can be expressed as the following function of interim
winning probabilities:

n∑
i=1

∫
Θi

(
θi −

1− Fi(θi)

fi(θi)

)
xi(θi) dFi(θi),

where the term in parentheses is often referred to as Myerson’s virtual value (henceforth MVV).
In contrast to the standard model, we remain agnostic about bidders’ preferences and instead represent the

auctioneer’s implied revenue in reduced form. Specifically, let Ji(xi, θi) denote the revenue obtained from selling
the good to type θi with probability xi, so that expected revenue can be written as

n∑
i=1

∫
Θi

Ji(xi(θi), θi) dFi(θi). (3)

This specification subsumes the standard model studied by Myerson, and it is far more general since Ji need not
even be linear in xi. For example, this framework accommodates environments with endogenous valuations and
bidders with CRA preferences.

We are interested in finding the revenue-maximizing mechanism when the auctioneer’s revenue is given by (3),
subject to bidders’ interim winning probabilities, defined by (2) being weakly increasing. This monotonicity re-
quirement is the only substantive assumption we impose: the auctioneer can implement any allocation in which
bidders’ interim winning probabilities are weakly increasing in their types and is restricted to search among such
allocations. As we explain below, this condition is satisfied in the standard model as well as in settings with endoge-
nous valuations and non-expected utility CRA preferences. In all these cases, monotonicity is both necessary and
sufficient for implementability; this is a direct consequence of bidders’ incentive compatibility.

To streamline the exposition, we assume that Ji is twice continuously differentiable and that ∂
∂xJi is not iden-

tically zero. In the rest of this section, we show how our general framework encompasses several important auction
environments studied in the literature.

2.1 IPV setting with linear utilities

This is the classical and most extensively studied case, already mentioned above. Bidder i’s utility takes the form
θizi− ti, where ti denotes their payment to the auctioneer, the auctioneer seeks to maximize E[

∑n
i=1 ti]. It is well

known that only allocations in which bidders’ interim winning probabilities are monotone can be implemented in
Bayesian Nash equilibrium. In this environment, the auctioneer’s revenue coincides with (3), with

Ji(xi, θi) =

(
θi −

1− Fi(θi)

fi(θi)

)
xi

up to a constant. This constant is pinned down by the participation constraint of the lowest types, which binds at
zero, so the auctioneer’s problem is exactly of the form described above.

The solution has been well understood since Myerson [1981]. In the regular case—where bidders’ MVVs are
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strictly increasing—the item is allocated to the bidder with the highest nonnegative MVV.3 To see it, note that due
to linearity in interim winning probabilities, we can rewrite the objective in (3) as

n∑
i=1

∫
Θi

Ji(xi(θi), θi) dFi(θi) = E

[
n∑
i=1

(
θi −

1− Fi(θi)

fi(θi)

)
zi(θ)

]
, (4)

which can be easily maximized pointwise in the space of allocations satisfying (1).

2.2 IPV setting with CRA preferences

In an important contribution, Gershkov et al. [2022] (henceforth GMSZ-CRA) extend optimal auction theory to
environments in which bidders’ preferences over interim winning probabilities depart from expected utility.4 Under
constant relative risk aversion, they showed that the auctioneer’s revenue can still be expressed as in (3), with

Ji(xi, θi) = θixi −
1− Fi(θi)

fi(θi)
gi(xi),

up to a constant. Here, gi(xi) is the certainty equivalent of a lottery paying $1 with probability xi and $0 otherwise.
If g′′i ≡ 0, bidder i has expected-utility preferences; when g′′i ≥ 0, she is risk-averse.

Monotonicity ofx remains both necessary and sufficient for implementability. Thus, the auctioneer’s problem
retains the same structure as before, but it is considerably harder because Ji is generally nonlinear in xi. As a result,
one cannot express the auctioneer’s expected revenue as a function of the allocation similarly to (4) and maximize it
pointwise.

To gain tractability, GMSZ-CRA focused on symmetric settings in which Ji andFi are identical across bidders.
Under risk aversion, Ji is concave in xi, which was their main case of interest. They showed that symmetry of the
environment, combined with the concavity of Ji, implies that the optimal allocation is symmetric, and they derived
a closed-form characterization of the corresponding interim winning probabilities.5 Their analysis, however, does
not cover asymmetric environments, which we take up in this manuscript.

2.3 IPV setting with endogenous valuations

In another influential paper, Gershkov et al. [2021] (henceforth GMSZ-EV) analyzed models with ex ante invest-
ments and showed that they naturally generate preferences that are convex in interim winning probabilities. In their
framework, before the auction, each bidder may take a private action ai that increases their valuation from winning.
Specifically, bidder i’s utility is

vi(ai, θi)zi − Ci(ai)− ti,

whereCi is a convex cost incurred regardless of the auction outcome.
GMSZ-EV demonstrated that when bidders are expected-utility maximizers, the auctioneer’s expected revenue

again takes the form in (3), with

Ji(xi, θi) = ωi(xi, θi)−
1− Fi(θi)

fi(θi)

∂

∂θi
ωi(xi, θi),

up to a constant, where
ωi(xi, θi) = max

ai
vi(ai, θi)xi − Ci(ai)

3More generally, the optimal allocation is determined by ironed MVVs and may involve randomization among tied bidders.
4Their standing assumption is quasilinearity in money.
5GMSZ-CRA also described an approach to the optimal symmetric auction when bidders are symmetric but not necessarily risk-averse.
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is the maximal expected utility of type θi given their interim winning probability xi. Since ωi is a pointwise maxi-
mum of functions linear in xi, it is convex in xi, and typically Ji inherits this convexity.6

Finding the optimal mechanism therefore requires maximizing the convex functional in (3) over monotone in-
terim winning probabilities x that are consistent with an allocation, i.e., that satisfy (1) and (2). Very little is known
about problems of this form. Notable exceptions include Zhang [2017], who found the optimum in an additively
separable example with n = 2; GMSZ-EV, who analyzed optimal symmetric allocations (and their global optimal-
ity) in symmetric environments; and Andreyanov et al. [2026], who characterized the asymmetric optimum with
two bidders.

To the best of our knowledge, no results exist for asymmetric environments with more than two bidders. To
address this gap, we develop a novel approach to the study of optimal auctions in general nonlinear settings without
imposing symmetry or restricting the auctioneer to symmetric mechanisms.

3 Illustrative example

Since our approach requires several steps to develop, it is instructive to preview its implications for the optimal
auction and underlying economics in a concrete example before turning to the full analysis.

Consider an endogenous-valuation model in which each bidder i can take a private action ai at cost a2i , which
increases own valuation from winning the good to vi(ai, θi) = 2

√
θiai so that the maximal utility of bidder i is

ωi(xi, θi) = θix
2
i . Relative to the standard linear model, the key difference is the quadratic dependence of utility

on the interim winning probability. This nonlinearity arises endogenously from bidders’ optimal ex ante investment
decisions. As a result, the auctioneer’s revenue function Ji equals bidder i’s MVV multiplied by the square of own
interim winning probability.

In this environment, Myerson’s optimal auction is generally suboptimal. The reason is that such an allocation
discriminates against stronger bidders so as to reduce their information rents (e.g., see Carroll and Segal [2019]),
thereby inducing excessive duplication of investment costs at the ex ante stage. By reallocating winning probability
away from weaker bidders, the auctioneer can mitigate over-investment and increase his expected revenue.

To see this more concretely, suppose that bidders’ typy distributions satisfy

θi −
1− Fi(θi)

fi(θi)
= (Fi(θi))

1/βi

for some βi ≤ 1, where Θi =
[

1
1/βi+1 , 1

]
. For example, if there are two bidders with β1 = 1 and β2 = 1

2 ,

then their type distributions are given by F1(θ1) = 2θ1 − 1 and F2(θ2) =
√
12θ2−3−1

2 .7 Here, a larger value
of βi is indicative of a higher bidder i’s strength in the sense of hazard ratio ordering.8 Direct calculations reveal
that Myerson’s auction yields expected revenue of 10

21 , whereas trading exclusively with the stronger bidder—bidder
1—gives 1

2 .
More generally, we show in Section 8.2 that the optimal auction allocates the good to the bidder with the highest

value of
(
Fi(θi)

)1/βi−1. It can be verified that this mechanism equalizes marginal revenues, ∂
∂xi

Ji = ∂
∂xj

Jj ,
whenever bidders i and j are tied. As a result, the optimal allocation discriminates less against stronger bidders than
Myerson’s auction. For example, if bidder i and bidder j are tied in Myerson’s auction, so that

(
Fi(θi)

)1/βi
=

6It can happen even though Ji is nonconvex in xi, its positive part max{0, Ji} is convex. As explained in GMSZ-EV, the difference is
inconsequential for the structure of the optimum under suitable regularity.

7To obtainFi, remark that its inverse vi satisfies vi(u)−(1−u)v′i(u) = u1/βi . Solving this equation yields vi(u) = 1
1−u

∫ 1
u s

1/βids.
8For two cumulative distribution functions, F andG, with the same support, F is stronger in the sense of hazard ratio ordering thanG if

1−F
f

≥ 1−G
g

. See Section 8.3 for the general definition and discussion of this order.
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(
Fj(θj)

)1/βj and βi > βj , then the stronger bidder i should win with certainty in the optimal auction.

4 Preliminaries and simplifications

As noted above, finding the optimal mechanism is a challenging problem. It is useful to introduce several simplifi-
cations and auxiliary observations that streamline the exposition and reduce the dimensionality of the problem.

First, we can absorb all asymmetries across bidders into the auctioneer’s revenue function by working with quan-
tiles of bidders’ types. Specifically, letui = Fi(θi)denote the quantile ofθi, which is uniformly distributed on [0, 1],
and define

Hi(xi, ui) = Ji(xi, F
−1
i (ui)).

Then, our original problem is equivalent to one in which types, denoted by u, are uniformly and identically dis-
tributed, and the auctioneer’s revenue from selling the good to type ui with probability xi is given by Hi(xi, ui).
In this formulation, both allocations and interim winning probabilities can be viewed as functions ofu9, so that (3)
becomes

n∑
i=1

∫ 1

0

Hi(xi(u), u) du. (5)

Second, observe that the expected revenue in (5) depends only on interim winning probabilities. It has been
known since at least Border [1991] and Mierendorff [2011] that x is consistent with some allocation z satisfying
analogues of (1) and (2) in theu-space (in which case we say that z inducesx) if and only if the following (Border)
constraint holds:

B(u) =

n∏
i=1

ui +

n∑
i=1

∫ 1

ui

xi(u)du ≤ 1 ∀u ∈ [0, 1]n. (6)

This constraint has received considerable attention in the literature. It ensures that interim allocation rules x are
feasible, in the sense that they can be induced by some ex post allocation satisfying the feasibility condition in (1).
Intuitively, (6) requires that for every cutoff vectoru, the total probability assigned to the bidders whose types lie in
the upper tails [ui, 1] does not exceed the probability that at least one such bidder is present.

Finally, it is without loss of generality to require each xi to be right-continuous with xi(1) = 1. To see this,
recall that xi is weakly increasing and thus has at most countably many jump discontinuities. Redefiningxi at those
points (and possibly at u = 1) affects neither the objective in (5) nor the Border constraint in (6).

By this observation, we can restrict attention to x that are cumulative distribution functions (CDFs) on the
unit interval. Let X denote the set of such CDFs. We refer to a tuple x ∈ X n, which captures interim winning
probabilities, as a reduced form. A reduced form x is feasible if it satisfies the Border constraints in (6), and it is
optimal if it solves the auctioneer’s problem, which can be succinctly restated as

max
x∈X n

n∑
i=1

∫ 1

0

Hi(xi(u), u)du s.t. B(u) ≤ 1 ∀u ∈ [0, 1]n. (7)

While compact, the maximization problem in (7) remains challenging due to the nonlinearities in Hi, and the
feasible set is defined by a large and intricate family of inequalities. To make progress, we introduce a novel charac-
terization of feasibility that dramatically simplifies Border’s condition. Furthermore, since the feasible set is convex,

9To obtain allocations in the original type space, we can simply substitute back u = (F1(θ1), ..., Fn(θn)), e.g., xi(Fi(θi)) stays for their
interim winning probability.
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additional tractability can be obtained by analyzing its extreme points.10 For example, if each revenue functionHi is
convex in its first argument—as often arises in settings with endogenous valuations—then an optimal reduced form
can be found at an extreme point of the feasible set. We call a feasible reduced form x extremal if it is an extreme
point of the set of CDFs satisfying the Border constraint in (6).

In the sequel, we characterize all extremal reduced forms and use this characterization, together with our new
feasibility result, to solve for the optimum.

5 Feasibility

Border’s condition (6) tells us exactly which reduced forms are feasible. The drawback, however, is that it requires
checking an entire n-dimensional family of inequalities—one for every cutoff vectoru ∈ [0, 1]n. When n = 2 this
is still manageable, but as soon as there are three or more bidders the condition becomes challenging to verify directly.
Our goal in this section is to show that this system of constraints can, in fact, be reduced to a simple unidimensional
test.

Our key insight is that feasibility can be checked along a single continuous curve inside the unit cube. That is,
for every reduced form x, there exists a path

s ∈ [0, 1] 7→ ν(s) ∈ [0, 1]n

such that Border’s inequality holds everywhere if and only if it holds along this path. Instead of monitoring a con-
tinuum of constraints in n dimensions, we can therefore follow just one curve. We refer to this curve ν associated
with a given reduced form x as the principal curve of x.

5.1 ψ-transform

To explicitly derive the principal curve, we need a transformation that takes a cumulative distribution function
(CDF) x ∈ X and associates it with a new function ψ, which we call the ψ-transform of x. The construction
works in two steps.

First, consider the map u 7→ ux(u). This product can be thought of as a CDF itself: it is weakly increasing,
starts at zero, and reaches one at u = 1. Intuitively, it captures the joint effect of the type u and the probability of
winning at that type.

Second, take the (right-continuous) inverse of this product map, denoted ψ.11 The function ψ is continuous,
weakly increasing, and always satisfiesψ(1) = 1. Its value at zero,ψ(0), simply records the lowest type at which the
original CDF turns strictly positive.

Figure 1 illustrates this transformation for a simple example. Panel (a) shows a step-shaped CDF x, panel (b) its
product with u, and panel (c) the resulting ψ-transform. The picture highlights how ψ “inverts” the joint map ux.
In fact, this transformation is reversible, i.e., x = (ψ)−1(u)/u, and so ψ can be thought of as a reparametrization
of CDFs on [0, 1].12

10Recall that a point in a convex set is extreme if it cannot be expressed as a convex combination of two distinct points in the set. As explained
in Section 2 of Kleiner et al. [2021], by the Krein–Milman theorem any convex and compact set in a locally convex space coincides with the closed
convex hull of its extreme points.

11For a CDF x ∈ X , its right-continuous generalized inverse x−1 is given by x−1(ι) = sup{u ∈ [0, 1] : x(u) ≤ ι}.
12 More formally, let Ψ be the subset of X that consists of continuous functions ψ such that ι/ψ(ι) ∈ [0, 1] is weakly increasing. Then,

x 7→ ψ is a bijection between X and Ψ.
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Figure 1: Illustration of the transformation ψ for x(u) = u · 1[1/4,1/2)∪[3/4,1)(u) + 1/2 · 1[1/2,3/4)(u).

5.2 Feasibility through the principal curve

Theψ-transform is more than a convenient relabeling: it is the tool that allows us to collapse Border’sn-dimensional
condition into a unidimensional one. The principal curve ν mentioned above is built directly from the family of
transforms (ψ1, . . . , ψn), one for each bidder. Given a reduced form x, which is not necessarily feasible, we begin
by combining the individual transforms through their geometric mean,

ψ = n

√√√√ n∏
i=1

ψi,

and then set for each s ∈ [0, 1],

νi(s) = ψi

(
ψ
−1

(s)
)
. (8)

The principal curve ν = (ν1, ..., νn) is continuous and weakly increasing. It begins at the minimal quantile
types where bidders’ interim winning probabilities are nonzero, which is precisely (ψ1(0), . . . , ψn(0)), and ends at
(1, . . . , 1).

The main result of this section is the following characterization of feasibility through the principal curve explic-
itly defined in (8).

Theorem 1. A reduced form x is feasible if and only if

B(ν(s)) ≤ 1 ∀s ∈ [0, 1].

Moreover, along the principal curve ν , the value ofB can be expressed as the following function of ψ alone:

B(ν(s)) =
(
max

{
ψ(0), s

})n
+ n

∫ 1

ψ
−1

(s)

ι d lnψ(ι). (9)

The logic behind the theorem is as follows. We show in the appendix that for a givens, the vectorν(s)maximizes
the left-hand side of Border’s inequality among all cutoff vectors with

∏
i ui ≥ sn.13 Thus, if the inequality holds at

this “hardest” point, it automatically holds for every other cutoff vector with the same product. Checking feasibility
along the principal curve therefore suffices.

13If either s = 0 or s < ψ(0), then any u such that
∏n

i=1 ui ≥ sn and ui ≤ ψi(0) for i = 1, . . . , n is optimal.
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The principal curve parametrizes the cutoffs that put the greatest strain on feasibility, and it does so in a way
that depends only on the ψ-transforms of the reduced form.14 Perhaps surprisingly, in our continuous-type setting
with monotonicity constraints, the value of B along that curve depends on these transforms only through their
geometric average ψ, as in (9). The explicit formula forB(ν(s)) makes this reduction particularly tractable.

Example 1. To illustrate, consider reduced forms of the power type xi(u) = u1/αi−1, where αi ∈ (0, 1). Direct
computations reveal that ψi(ι) = ιαi and so ψ(ι) = ι

∑n
i=1 αi

n , which gives

B(ν(s)) = sn +
(
1− sn/

∑n
i=1 αi

) n∑
i=1

αi. (10)

Applying the theorem, we conclude

x is feasible ⇐⇒
n∑
i=1

αi ≤ 1.

This unidimensional reduction provides a complete and tractable test for feasibility. Just as important, it pre-
pares the ground for our next steps, namely the characterization of extremality and optimality that we will be cov-
ering in the subsequent sections.

6 Extremality

In this section, we study the structure of extremal reduced forms and the structure of corresponding allocations that
induce them.

6.1 Extremal reduced forms

Whenever the revenue functionsHi are convex inxi—as they are in many applications with endogenous valuations—
the objective in (7) is convex. Maximizing a continuous convex function over a convex compact set always yields a so-
lution at an extreme point. In such cases, the optimal mechanism can be implemented by an extremal reduced form.
Even when the objective is not convex, extremal reduced forms remain essential serving as the “building blocks” of
the feasible set, since any feasible reduced form can be expressed as a convex combination of them.15

This perspective was first emphasized in the influential paper Kleiner et al. [2021], which demonstrated the sur-
prising tractability of extreme points of feasible symmetric reduced forms and showed how they illuminate problems
in auctions, delegation, and persuasion. Here, we take the next natural step in this agenda by studying extreme points
of (potentially asymmetric) feasible reduced forms. We show that this broader set also admits a tractable description,
one that can be directly exploited in economic applications.

At an intuitive level, extremal reduced forms correspond to “corners” of the feasible set, where Border’s condition
is maximally tight. If the inequality were slack anywhere, then the reduced form could be perturbed in different
directions and written as a convex combination of other feasible points. Our main result in this section establishes
that extremality arises precisely when the feasibility constraints along the principal curve bind at every point.

Theorem 2. A feasible reduced form x is extremal if and only if

B(ν(s)) = 1 ∀s ∈ [0, 1],

14A related observation also appeared in Cai et al. [2018], who studied feasibility of (potentially nonmonotone) reduced forms in settings with
finitely many types.

15For example, see Kleiner et al. [2021], who explained that every feasible reduced form can be written as an integral over extremal ones due to
the Choquet theorem.
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or equivalently:

ψ(ι) = max
{
ψ(0), n

√
ι
}

∀ι ∈ [0, 1]. (11)

Theorem 2 makes it straightforward to verify extremality. For example, recall the setting of Example 1, whereB
along the principal curve is given by (10). Direct calculations show that a reduced form of the power type,

x is extremal ⇐⇒
n∑
i=1

αi = 1.

The same conclusion follows immediately from (11), using the fact that ψ(ι) = ι
∑n

i=1 αi
n .

Although the characterization in Theorem 2 may at first appear abstract, it has a natural interpretation when
viewed through the principal curve. For each bidder i’s type ui = u, the principal curve specifies a point ν(s) on
the curve that corresponds to that type, that is

s =
(
νi
)−1

(u).

Extremality requires that the feasibility inequality be tight along this path, meaning that bidder i with type u wins
against all opponents whose types lie below the point on the principal curve and loses against all opponents whose
types lie above that point. Formally, this statement can be expressed as16

xi(u) = Pr (uj < νj(s) ∀j ̸= i) =
∏
j ̸=i

νj(s), (12)

Figure 2 illustrates this point with a simple numerical example. In this figure, the black line corresponds to the
principal curve withu1 andu2 on the horizontal and vertical axes respectively, constructed from an extremal reduced
form.

s′

s′′

1/4 1/2 3/4 u1

1/4

1/2

3/4

u2

Figure 2: Principal curve (black) induced by an extremal reduced form. The points s′, s′′ correspond to bidder 1
types u = 1/2, 3/4 and the associated bidder 2’s cutoffs ν2(s′) = 1/2, ν2(s′′) = 3/4.

For example, bidder 1 with type u = 1/2 wins with probability 1/2 and with type u = 3/4 wins with probability

16To see it, recollect that uxi(u) = ψ−1
i (u) due to the definition of the ψ-transform, and

∏
j ̸=i

νj(s) = sn/u = ψ−1
i (u)/u due to the

definition of the principal curve and Equation (11).
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3/4. Using (12), we can recover the reduced form consistent with the principal curve shown in the figure:

x1(u) = u · 1[1/4,1/2)∪[3/4,1](u) + 1/2 · 1[1/2,3/4)(u), (13)

x2(u) = max{1/4, u} · 1[0,1/2)(u) + min{u+ 1/4, 1} · 1[1/2,1)(u). (14)

This representation makes clear that the allocation inducing this extremal reduced form is unique: bidder 1
wins in the gray region, bidder 2 in the red region, and otherwise the good remains unallocated. Finally, note that
the reduced form defined in (13), (14) satisfy two simple inverse relations: x1 = x−1

2 on x1 > 0 and x2 = x−1
1

on x2 > 0. For the two-bidder case, Yang and Yang [2025] established that this characterization is equivalent to
extremality. With more than two bidders, no such unidimensional inverse relationship exists: the coordinates of x
are genuinely nonlinear. Equation (12) can therefore be viewed as the natural multidimensional generalization of
the two-bidder case.

6.2 Allocations inducing extremal reduced forms

The analysis in the previous section showed that extremal reduced forms are entirely determined by their principal
curves and that Border’s condition must bind along these curves. This already indicates that such reduced forms
can arise only from highly structured allocation rules. We now turn to these allocation rules. Understanding them
clarifies the geometry behind extremality and will allow us to revisit—and sharpen—the classical BIC–DIC equiv-
alence.

The BIC–DIC equivalence, first established by Manelli and Vincent [2010], states that every extremal reduced
form can be implemented in dominant strategies. In other words, one can find an allocation z that induces the re-
duced form in question such that each zi is weakly increasing in bidder i’s own type.17 Their original proof considers
piecewise-constant reduced forms together with an approximation argument. Our characterization of extremality
provides a more direct route to obtain the BIC–DIC equivalence without relying on limiting arguments. We explic-
itly characterize how to induce extremal reduced form and establish that the allocations inducing them satisfy the
aforementioned DIC property as well as two other properties that could not be seen with the earlier approach. Since
explained in Footnote 15, any feasible reduced form can be expressed as an integral over extremal reduced forms, the
equivalence emerges almost automatically.

To make this structure precise, we introduce the notion of a score allocation.

Definition 1. An allocation z is a score allocation if there exists a tuple of strictly increasing, right-continuous func-
tions q = (q1, . . . , qn) : [0, 1] → Rn such that

zi(u) =

1q−1
i (R+)(ui) if qi(ui) > maxj ̸=i qj(uj),

0 otherwise.
(15)

Here, qi(ui) is the score assigned to bidder iwith typeui, and the good is awarded to the bidder with the highest
nonnegative score.18 Score allocations provide a remarkably simple description of the complex feasible set: they are
exactly the allocations that induce extremal reduced forms. Such allocations are also familiar in classical settings.
For example, Myerson’s optimal auction is a score allocation whenever bidders’ MVVs are strictly increasing in their
types: the mechanism that awards the object to the bidder with the highest nonnegative MVV is exactly of this

17See also Gershkov et al. [2013] and Goeree and Kushnir [2023].
18Uniqueness here refers to the allocation rule z, not to the score functions q themselves.
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form.19

Score allocations induce extremal reduced forms. To see it, take the set of scores q and remark that the score
allocation z is a unique (pointwise) maximizer

n∑
i=1

∫
[0,1]n

qi(ui)z̃i(u)du

in the space of all allocations, where uniqueness is the direct consequence of strict monotonicity of scores. As a
result, the reduced form x induced by that score allocation, i.e., xi(ui) = E[zi|ui], is a unique maximizer of

n∑
i=1

∫
[0,1]n

qi(ui)x̃i(u)du

in the space of all feasible reduced forms. This shows that x is not merely extremal but even exposed.20 Strikingly,
the converse is also true as shown in the theorem below.

Theorem 3. A feasible reduced form is extremal if and only if it can be induced by a score allocation. Moreover,
whenever this holds, the score allocation with scores qi(u) = uxi(u) on [ψi(0), 1] and qi(u) < 0 on its complement
induces it.

This theorem makes the link between extremality and score allocations completely transparent. First, the entire
set of extremal reduced forms can be generated simply by working with scores and then computing bidders’ winning
probabilities. Second, to test whether a given reduced form is extremal, it suffices to construct the corresponding
score function—just the type multiplied by the interim winning probability, truncated belowψi(0) and verify that
z defined in (15) integrates to the reduced formx that we started with. Both tasks are strikingly simple compared to
the original n-dimensional Border’s condition.

Although score allocations have appeared in the social choice literature, their connection to extremality has
not, to the best of our knowledge, been recognized. Mishra and Quadir [2014] referred to them as simple utility
maximizers and showed that they can be axiomatized by three basic properties:

1. Deterministic. For every type profile exactly one bidder receives the good, or none if all scores are strictly
negative.

2. Monotone. Each bidder’s allocation is weakly increasing in their own type.

3. Nonbossy. A bidder cannot change the allocation of others without also changing their own. Formally,

zi(ui,u−i) = zi(u
′
i,u−i) =⇒ z(ui,u−i) = z(u

′
i,u−i) ∀i, u−i.

In words, if bidder i’s own outcome does not change when their type is varied, then the outcome for all other
bidders must also remain unchanged. This condition rules out “bossy” manipulations where the bidder could
leave their own allocation fixed while reshuffling who among their rivals receives the good.

Taken together, these properties have a sharp geometric implication: the regions of the type space where the
auctioneer keeps the good, {u ∈ [0, 1]n : z(u) = 0}, and the regions where each bidder i’s type ui ∈ [0, 1]

19As explained in Section 2.1, bidder i’s Myerson’s virtual value as a function of their type θi equals θi − 1−Fi(θi)
fi(θi)

. In the quantile space,
this object can be expressed as vi(u)− (1− u)v′i(u), where vi is the inverse ofFi.

20Recall that a point in a convex subset of a topological vector space is exposed if some continuous linear functional attains its strict maximum
at that point, and every exposed point is extremal, e.g., see Kleiner et al. [2021]. Here, the objective is a continuous linear functional when the set
of CDFs on the unit interval is viewed as a subset of Lebesgue integrable functions endowed with the norm topology.
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wins, the sets {u−i ∈ [0, 1]n−1 : zi(ui,u−i) = 1} are hyperrectangles aligned with the axes. This rectangular
structure is exactly what makes score allocations induce extremal reduced forms. Note that a vast majority of ex post
allocations do not admit this rectangular structure, e.g., suppose the auctioneer awards the good to bidder 1 when
u1 >

u2+u3

2 , and otherwise allocates it efficiently among bidders 2 and 3. Clearly, the set of (u2, u3) such that
bidder 1’s type u1 wins is not a rectangle.

7 Optimality

Having characterized feasibility and extremality, we now turn to optimality. A central difficulty is that the auc-
tioneer’s objective is generally nonlinear in interim winning probabilities, which rules out the convenient pointwise
maximization available in Myerson’s linear case. Instead, we reformulate the problem as an optimal control problem
that constructs the principal curve continuously. This reformulation reveals the key feature of the optimal auction—
an equalization of marginal revenues along the optimal principal curve—and allows us to characterize the optimum
in regular settings in Sections 8 and 9.

7.1 δ-transform

Recall that feasibility can be expressed in terms of the geometric mean of the ψ-transforms (ψ1, . . . , ψn) along the
principal curve. This observation naturally suggests searching for the optimum directly over these transformations
that satisfy the feasibility criterion in Theorem 1. However, two challenges immediately arise. First, the objective is
still expressed in terms of the original interim winning probabilities (x1, . . . , xn), so both revenue and feasibility
must first be written in the same language. Second, working directly with ψ-transforms is difficult because each ψi
must be continuous, weakly increasing, and satisfy the additional structural condition that ι/ψi(ι) ∈ [0, 1] is also
weakly increasing (see Footnote 12).

To resolve both issues simultaneously, we introduce a logarithmic reparameterization of the ψ-transform. For
each x ∈ X and t ≥ 0, let

δ(t) = − lnψ(e−t),

which we term a δ-transform ofx for short, sinceψ is derived fromx. The properties of theψ-transform established
in Section 5—especially Footnote 12—imply that δ is absolutely continuous with derivative lying between 0 and 1.
Thus, δ′(t) is well defined almost everywhere and can be interpreted as the elasticity of the ψ-transform,

Just as ψ provides a reparametrization of a CDF x ∈ X , the function δ provides an equivalent (and more
tractable) reparametrization, and therefore we may work directly with δ while recovering the underlying CDF when
needed.21 To see how the δ-transform encodes CDFs, observe that it defines a parametric curve

t ∈ R+ 7→
(
e−δ(t), eδ(t)−t

)
in the unit square, where the horizontal and vertical axes correspond to type u and probability x, respectively. For
any fixed type u, the highest value of the second coordinate attained on this curve when the first coordinate equals
u is precisely the value of the CDF at that type x(u), that is

x(u) = eδ(t)−t
∣∣∣
t=(δ)−1(− lnu)

. (16)

21Formally, x 7→ δ is a bijection between CDFs on the unit interval and absolutely continuous functions on R+ that start at zero and have
derivative in [0, 1].
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Thus, the δ-transform captures how quickly the cumulative probability encoded inx accumulates as we move along
the unit interval, starting from u = 1 at t = 0. In the appendix, we elaborate more on the geometry of this
transform.

7.2 Optimal control along the principal curve

In this section, we first use the δ-transform to place both feasibility and revenue in the same transformed space so
that the auctioneer’s problem no longer mixes different representations. We then show that the auctioneer’s problem
can be expressed as a textbook optimal control problem with absolutely continuous state variables to which standard
tools from convex analysis and continuous-time control theory apply directly.

Given a reduced form x (not necessarily feasible), we claim that the auctioneer’s revenue can be written as

n∑
i=1

∫ ∞

0

e−tRi(δi(t), t)dt, (17)

whereRi(δ, t) is given by22

Ri(δ, t) =

∫ δ

0

∂

∂x
Hi(e

τ−t, e−τ ) dτ. (18)

Economically, Ri(δ, t) aggregates marginal contributions ∂
∂xHi of all types u = e−τ with τ ∈ [0, δ], where each

such type is evaluated at allocation probabilityx = eτ−t along the curve indexed by t. The outer integral then sums
these cumulative marginal values across all such t-curves. To see the logic behind (17), note that for each bidder i,
we have ∫ 1

0

Hi(xi(u), u)du =

∫ 1

0

∫ 1

0

1[0,uxi(u)](ι)
∂

∂x
Hi

( ι
u
, u
)
dιd lnu

=

∫ 1

0

∫ 1

0

1[ψi(ι),1](u)
∂

∂x
Hi

( ι
u
, u
)
d lnudι =

∫ ∞

0

e−tRi(δi(t), t)dt,

where we used the definition of the ψ- and δ-transforms, and (18).
As for feasibility, recollect that x is feasible if and only if Border’s constraints hold along the principal curve.

Using (9) from Theorem 1, we can express feasibility of x through its δ-transforms (see the appendix for details) as

∫ t

0

e−τ
n∑
i=1

δ′i(τ)dτ ≤ 1− e−
∑n

i=1 δi(t). (19)

Economically, (19) plays the role of a dynamic feasibility constraint. The left-hand side records how much the total
winning probability has been allocated up to the point where the principal curve reaches types at quantile e−t. The
right-hand side records how much probability could possibly have been allocated by that point, given the cumulative
height

∑n
i=1 δi(t) of the principal curve.

Putting everything together—the expression for revenue in terms of δ and the feasibility condition in the same
variables—we obtain the following representation of the auctioneer’s problem.

22SinceHi(x, u) = Ji(x, F
−1
i (u)), where J is twice continuously differentiable and Fi is continuously differentiable with fi > 0, the

functionRi is well-defined. In fact, it is continuously differentiable withRi(0, t) = 0 and uniformly bounded ∂
∂δ
Ri.
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Proposition 1. A reduced form is optimal if and only if its δ-transforms solve the following program:

max
δ

∫ ∞

0

e−t
n∑
i=1

Ri(δi(t), t)dt s.t. δ′ ∈ [0, 1]n, δ(0) = 0, and (19). (20)

Moreover, there exists an optimal reduced form that is extremal if and only if there exists a solution to (20) satisfying

n∑
i=1

δ′i(t) = 1[0,T ](t) for some T ∈ [0,∞].

The first part of the proposition formalizes how the abstract maximization problem (7) can be rewritten in
a transparent way as an optimal control problem along the principal curve. The second part highlights a sharp
structural implication when searching for the optimum among extremal reduced forms.23 Our characterization of
extremality in Theorem 2 implies that any extremal reduced form corresponds to a front-loaded allocation path in
continuous time in which probability is assigned at the maximal feasible rate up to a cutoff, after which allocation
ceases. Hence, when solving (20), it suffices to search among policies satisfying

∑n
i=1 δ

′
i(t) = 1 until some cutoff

time T ∈ [0,∞], followed by no further allocation.
The maximization problem that appears in the proposition is an optimal control problem with pure state con-

straints as defined in Chapter 6 of Seierstad and Sydsaeter [1986]. To see this, note that (19) can be written as

µ(t) ≤ 1− e−
∑n

i=1 δi(t),

where µ is an auxiliary state variable with dynamics µ′(t) = e−t
∑n
i=1 ai(t), µ(0) = 0, and a = δ′ ∈ [0, 1]n is

the control vector. The existence and characterization of its solution through the Pontryagin maximum principle di-
rectly follow from results in this book. Here, we focus on a single necessary condition—derived from first principles
in the appendix—that is particularly informative about the structure of the optimum.

Proposition 2. Let x∗ be optimal and denote its δ-transforms by δ∗. Consider an interval (t, t) and two distinct
bidders i ̸= j such that both (δ∗i )

′, (δ∗j )
′ are bounded away from 0 and 1 on that interval. Then, their marginal

revenues are equalized:
∂

∂δ
Ri(δ

∗
i (t), t) =

∂

∂δ
Rj(δ

∗
j (t), t) ∀t ∈ (t, t).

Recall that δ∗ defines the principal curve, and that intervals on which some (δ∗i )′(t) hits the bounds {0, 1}
correspond to jumps or flat segments of the associated interim winning probability—both arising from binding
monotonicity constraints and thus from ironing. Proposition 2 identifies what happens on segments where ironing
is not required.

Whenever the optimal principal curve moves simultaneously in coordinates i and j, the movement must
follow a direction along which their marginal revenues coincide.

If one direction provided a strictly larger marginal return, the auctioneer would reallocate an infinitesimal amount
of movement toward that coordinate and away from the other. Thus, on regions in which the interim winning
probabilities are strictly increasing and continuous, the principal curve traces an “indifference path” of marginal
revenues. As we explain next, this condition generalizes the familiar Myersonian rule—namely, that the object is
awarded to the bidder with the highest MVV on the regular region—to nonlinear environments.

The marginal revenue equalization property in Proposition 2 therefore “almost” characterizes the optimum in
settings where ironing is not required. The only missing element is the trajectory of the cumulative height

∑n
i=1 δi(t)

23As explained in Section 6, this restriction is without loss of generality when eachHi is convex in xi.
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of the principal curve, which is constrained by feasibility through (19). To make further progress and determine
this trajectory at the optimum, we first study environments in which the optimum is extremal, and thus it satisfies∑n
i=1 δi(t) = t along the principal curve, as implied by Proposition 1. This class includes both Myerson’s linear

model and many auction environments with endogenous valuations. We then extend our analysis to environments
in which the optimum is non-extremal as happens when bidders’ have CRA preferences with positive risk-aversion.

8 Optimal auctions: the case of extremality

Before turning to nonlinear settings, it is instructive to revisit the classical Myerson’s model through the lens of our
transformed optimal-control representation.

8.1 Linear utilities

Recall that bidders’ types in the quantile spaceu are related to their actual typesθ via θi = vi(ui), where vi = F−1
i .

Thus, their revenue functions can be written as

Hi(x, u) =

vi(u)− (1− u)v′i(u)︸ ︷︷ ︸
=ζi(u)

x. (21)

In this expression, ζi is bidder i’s MVV expressed in the quantile space. The transformation in (18) reparametrizes
this as

Ri(δ, t) =

∫ δ

0

ζi(e
−τ ) dτ, (22)

andRi is independent of t precisely becauseHi is linear in its first argument.
We now use Propositions 1 and 2 to explain how our approach can be used to find the optimal auction when

MVVs are strictly increasing. In this regular environment, it is natural to conjecture that the optimal principal curve
moves strictly in all coordinates. If so, then Proposition 2 implies that the marginal revenues of all bidders must
coincide on the entire principal curve. In addition, the second part of Proposition 1 implies that feasibility binds
pointwise along the principal curve, that is

∑n
i=1 δi(t) = t. These two observations lead us to study the following

system of n+ 1 equations in n+ 1 variables:

∂

∂δ
Ri(δi, t) = p,

n∑
i=1

δi = t, (23)

where p can be interpreted as the common marginal revenue. It is easy to see that this system admits a unique
solution, and its solution turns out to characterize Myerson’s optimal auction exactly.

Proposition 3. In Myerson’s linear model, assume bidders’ MVVs are strictly increasing. For every t ≥ 0, there exists
a unique solution (δ♯(t), p♯(t)) to the system (23), and define the cutoff time

T = inf{t ≥ 0 : p♯(t) ≤ 0}.

Then, the auctioneer’s problem admits an optimal reduced formx∗ whose δ-transforms follow this candidate path until
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the cutoff and then remain constant:24

δ∗i (t) =

δ
♯
i (t) t ≤ T,

δ♯i (T ) otherwise.
(24)

By Proposition 1, each optimal reduced forms corresponds to a solution to the optimal control problem in that
proposition. Building on this observation, Proposition 3 identifies the candidate optimum by solving, at each t,
the equalization of marginal revenues together with the aggregate constraint

∑n
i=1 δi = t. Once these functions

(δ♯, p♯) are obtained, the solution to the control problem is constructed by “freezing”δ♯ at the first timeT when the
common marginal revenue becomes negative. To verify that this candidate is indeed optimal, we use a dual certificate
explicitly constructing dual variables to the constraint that appear in the optimal control problem.

The optimal reduced formx∗ is then recovered from δ∗ identified in this proposition by inverting (δ∗1 , . . . , δ∗n)
as in (16). To see the implications of this construction in the linear model, note that the mapping

t ∈ R+ 7→
(
e−δ

∗
1 (t), . . . , e−δ

∗
n(t)
)

defines a continuous, strictly decreasing curve in the u-space, which starts at (1, . . . , 1) and goes all the way to(
e−δ

∗
1 (T ), . . . , e−δ

∗
n(T )

)
. This curve coincides with the principal curve associated with x∗, up to a reparametriza-

tion of its time index.
To recover the optimal principal curve ν∗ in the original parametrization, we use (23) and the fact bidder i’s

marginal revenue coincides with that bidder’s MVV, i.e., ∂
∂δRi = ζi(e

−δ), as appears in (22). It follows that the
optimal principal curve equalizes bidders’ MVVs pointwise,

ζ1 (ν
∗
1 (s)) = · · · = ζn (ν

∗
n(s)) ∀s ∈ [0, 1].

Combining this observation with (12) implies that the optimal allocation can be implemented as a score allocation.
Specifically, bidder i’s score is given by

q∗i (ui) = p♯
(
(δ♯i )

−1(− lnui)
)

(25)

= ζi(ui), (26)

where the equality in the second line is due to (22) and (23). This confirms that our construction reproduces exactly
the allocation rule originally identified in Myerson [1981].

8.2 Main result

We now apply our tools to nonlinear environments. A key observation is that, under an appropriate regularity con-
dition, the optimal reduced form can still be constructed from the same auxiliary static system (23) that characterizes
the Myersonian optimum in the linear case. Formally, we say that an environment is regular if

(A) eachRi is strictly concave in its first argument;

(B) for each time t ≥ 0, the solution (δ♯(t), p♯(t)) to (23) is unique and is such that the path δ♯ is strictly
increasing and the common marginal revenue p♯ is strictly decreasing.

24In fact, this is the only optimal reduced form because the optimal control problem in (20) admits at most one solution due to the strict
concavity of eachRi in its first argument.
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In Myerson’s linear model, Condition (A) means that bidders’ virtual valuations are strictly increasing. In this case,
we can invert ∂

∂δRi(δi, t) = p directly and solve for δi as a function of time t and the common marginal revenue
p, which is then pinned down by

∑n
i=1 δi = t. Condition (B) holds trivially in the linear case because each Ri is

independent of t. In general nonlinear environments, Condition (B) does not follow from Condition (A). Thus,
our definition of regularity is a genuine extension of Myersonian regularity to nonlinear settings. The appendix
provides primitive sufficient conditions guaranteeing (A)–(B).

Then, we obtain the following characterization of the optimum.

Theorem 4. Consider a regular environment, and define a cutoff time T as in Proposition 3. If for each bidder i,
the function δ†i : [T,∞) → R defined by ∂

∂δRi(δ
†
i (t), t) = 0 is weakly decreasing, then the auctioneer’s problem

admits an optimal reduced form x∗, which is extremal, and whose δ-transforms δ∗ take the form in Equation (24).
Furthermore, this reduced form can be induced by the score allocation with scores q∗ of the form in Equation (25).

Theorem 4 explicitly constructs the optimal auction in regular nonlinear environments under an additional
monotonicity condition that ensures extremality of the optimum. This added condition guarantees that once bid-
der i’s marginal revenue falls to zero, it never becomes profitable to resume allocating probability to that bidder at
lower quantiles. It is straightforward to verify that this condition holds wheneverHi is convex in its first argument;
consequently, the theorem applies to a broad class of environments with endogenous valuations. It is strictly more
general than convexity of ∂

∂xHi and it holds vacuously whenever one bidder’s marginal revenue is nonnegative, i.e.,
T = ∞, so that there no exclusion is optimal. Strikingly, despite the presence of nonlinearities that render standard
approaches inapplicable, the resulting characterization of the optimum coincides formally with that obtained in the
linear model.

From an economic perspective, the theorem delivers a closed-form expression for the optimal scores q∗. Bidder
i’s score q∗i is given by the common marginal revenue p♯(t) evaluated at the time corresponding to that bidder’s type,
namely t = (δ♯i )

−1(− lnui). We refer to these scores as principal virtual values (PVVs henceforth) to distinguish
them from MVVs.

The allocation based on PVVs awards the good to the bidder who lies higher on the optimal principal curve.
In linear environments, PVVs coincide with MVVs, as shown in the previous section. In nonlinear environments,
however, bidder i’s PVV—unlike MVV—incorporates information about other bidders. This reflects the fact that
PVVs are constructed to equalize marginal revenues across tied bidders. To see it, remark that whenever the optimal
interim allocation x∗i (ui) is strictly positive, bidder i’s PVV is simply the marginal revenue of that bidder in the
optimal mechanism, that is 25

q∗i (ui) =
∂

∂x
Hi (x

∗
i (ui), ui) .

In the context of the endogenous-valuation model, the marginal revenue ∂
∂xHi internalizes the effect of interim

winning probabilities on bidders’ investment incentives. Equalizing their marginal revenues therefore ensures that
winning probability is allocated so as to balance allocative efficiency against the distortionary effects of excessive
duplication of investment costs. In this sense, the optimal mechanism disciplines ex ante investment by reallocating
probability until all active bidders contribute equally at the margin.

We now revisit our motivating example through the lens of Theorem 4, and then further elaborate on the eco-
nomic content of the optimal mechanism when bidders’ valuations are endogenous in the section that follows.

Example 2. We now use Theorem 4 to verify the optimality of the score allocation described in the example in Section 3.
In the parametric specification of this example, bidder i’s revenue function in the quantile space is given byHi(x, u) =

25This representation can be obtained by combining the definition ofRi with (23), and noting that x∗i (ui)ui = e−(δ
♯
i )

−1(− lnui) (due
to (16)) along the principal curve.
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u1/βix2, which yields
∂

∂δ
Ri(δ, t) = 2e−(1/βi−1)δe−t.

Clearly,Ri is strictly concave provided that βi ∈ (0, 1).
Direct calculations show that (23) admits a unique solution of the form:

δ♯i (t) = κ(1/βi − 1)−1t, p♯(t) = 2e−(1+κ)t,

whereκ is the normalization constant so that
∑n
i=1 δ

♯
i (t) = t. This shows that the environment is regular and that the

cutoff time defined in Theorem 4 is infinite. As a result, the additional monotonicity condition imposed in the theorem
holds trivially, hence δ∗ = δ♯.

Using (25), we can now recover the corresponding PVVs:

q∗i (ui) = 2u
(1+1/κ)(1/βi−1)
i .

Since the exponent in the first bracket is strictly positive, bidder i’s PVV exceeds j’s if and only if u1/βi−1
i > u

1/βj−1
j .

Returning to the original type space, this shows that the optimal allocation awards the good to the bidder with the highest
value of (Fi(θi)

)1/βi−1, as claimed.

8.3 Application to discrimination in the endogenous-valuation model

In Example 2, we have argued that the optimal mechanism may be “more asymmetric” than what the auction based
on MVVs may suggest. We now show using Theorem 4 that this phenomenon holds beyond that single example
and is driven by the strict convexity of bidders’ revenue functions in their interim winning probability.

Consider a setting with endogenous valuations where the reduced-form utility of every bidder i is equal to
ωi(xi, θi) = θih(xi) where h′, h′′ > 0. As explained in Section 2.3, bidder i’s revenue function Ji takes the
form:

Ji(xi, θi) =

(
θi −

1− Fi(θi)

fi(θi)

)
h(xi),

where the term in brackets is bidder i’s MVV, which is assumed to be strictly increasing to avoid dealing with ironing
that does not add much economic insight. This setting generalizes that of Example 2 and is chosen because Myerson’s
virtual values arise naturally as scaling factors of MVVs even though the utilities are nonlinear.26 As a result, we can
naturally compare bidders’ strength within this framework in terms of their MVVs and contrast the optimal auction
here to Myerson’s auction that allocates the good to the bidder with the nonnegative highest MVV.

One natural order that has been employed to rank bidders’ strength (e.g., see Carroll and Segal [2019]) is the
hazard ratio order. A cumulative distribution function F dominates another cumulative distribution function G
in this order denoted F ≥hr Gwhen their cumulative survival functions satisfy

(1− F (θ′))(1−G(θ)) ≥ (1− F (θ))(1−G(θ′)) ∀θ ≤ θ′,

see Chapter 1 in Shaked and Shanthikumar [2007]. As explained in this book, this ranking implies 1−F
f ≥ 1−G

g

over the common support of these two distributions. Intuitively, high types are more likely under F than under
G conditional on any interval of the form [θ,∞), and so a bidder whose types are drawn from F should receive a
higher information rent than the one whose types are drawn from G. As a result, if there are two distinct bidders

26The primitive utility over actions-type (ai, θi) pairs that gives rise to such an ωi can be recovered via minx(θih(x) + ai)/x when the
investment costs are normalized toCi(ai) = ai, see Andreyanov et al. [2026].

22



i, j with the same value θi = θj and Fi ≥hr Fj , then Myerson’s auction will allocate the good more often to the
weaker bidder j.

As shown in the previous section, to determine the optimum, one needs to work in the quantile space of bidders’
types. The hazard ratio order however is silent about bidders’ strength in the quantile space, where their MVVs can
be expressed using vi = F−1

i analogously to (21) as

ζi(u) = vi(u)

(
1− (1− u)

v′i(u)

vi(u)

)
. (27)

This happens because even if there are two distinct bidders i, j with the same quantile ui = uj and Fi ≥hr Fj
so that vi ≥ vj , the second term in (27) can be lower for bidder i than bidder j when Fi is much more unequal
than Fj . In our comparison of the optimal and Myerson’s auctions, we use one more standard stochastic ordering
allowing to rank bidders’ strengths in the quantile space as well.

Following Chapter 4 in Shaked and Shanthikumar [2007], we say that a cumulative distribution function F
dominates another cumulative distribution function G in the star order denoted F ≥∗ G when their quantile
functions satisfy

F−1(u′)G−1(u) ≥ F−1(u)G−1(u′) ∀u ≤ u′.

The star order meansG that is more equal relative to its mean thanF . There are many parametric families of distri-
butions for which F ≥hr G automatically implies thatG ≥∗ F , e.g., this is true for (1) Normal, Logistic, Gumbel
distributions ordered by a location parameter, (2) Exponential distributions ordered by a scale parameter, (3) Power
distributions ordered by a shape parameter, as well as (4) distributions of the form in Example 2.

Going back to our auction framework, if for two bidders i and j, in addition toFi ≥hr Fj , we haveFj ≥∗ Fi,
then not only bidder i’s values, vi, are stochastically higher but also per-unit information rents, (1−u) v

′
i

vi
, are lower.

This means that the stronger bidder i is allocated the good more often in the quantile space as opposed to bidder j.
Equipped with these two approaches to rank bidders’ strengths, we can now state our result formally.

Proposition 4. Consider the model as above, and assume that the environment is regular and that bidders’ MVVs
are strictly increasing, and that

F1 ≥hr Fi ≥hr Fn, Fn ≥∗ Fi ≥∗ F1 ∀i.

Then, the optimal reduced form x∗ and the reduced form induced by Myerson’s auction xM satisfy:

1. The strongest bidder 1 is always favored by the optimum relative to Myerson’s auction, x∗1 ≥ xM1 ;

2. The weakest biddern is always discriminated against by the optimum relative to Myerson’s auction, x∗n ≤ xMn .

Proposition 4 compares the interim winning probabilities of the strongest and weakest bidders across two auctions—
optimal and Myerson’s—and shows that the optimum allocates more often the strongest bidder at the expense of
the weakest one. Intuitively, this happens in order to decrease duplication of costs that necessarily arises when bid-
ders make investments at the ex ante stage. It is instructive to unpack the argument behind this proposition to see
the economic mechanism at play as well as the role of its assumptions. Below, we sketch the argument and intuition
for the first part of Proposition 4 and relegate all remaining details to the appendix.

As explained in the previous section, Myerson’s auction equates bidders’ MVVs along its principal curve, mean-
ing that the δ-transforms of xM satisfy

ζ1

(
e−δ

M
1

)
= ζi

(
e−δ

M
i

)
∀i ̸= 1.
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Since the strongest bidder’s distribution F1 is more equal in the sense of the star order than any other bidder i’s
distribution Fi, their MVVs satisfy ζ1 ≥ ζi whenever ζi ≥ 0. As a result, bidder 1’s δ-transform corresponding to
Myerson’s auction is the highest one.

By equating MVVs, Myerson’s auction completely ignores the curvature of bidders’ revenue functions, which
is due to the fact that interim winning probabilities only affect bidders’ ex ante investment decisions, leaving bidder
1 with the highest marginal revenue along its principal curve:

ζ1

(
e−δ

M
1

)
h′
(
eδ

M
1 −t

)
≥ ζi

(
e−δ

M
i

)
h′
(
eδ

M
i −t

)
∀i ̸= 1. (28)

This suggests that the auctioneer can raise expected revenue by reallocating more winning probability to bidder 1.
Since the cumulative height along the principal curve is fixed at t , i.e.,

∑n
i=1 δ

M
i (t) = t, the only such reallocation

must be at the expenses of other weaker bidders. But this precisely what is the optimum does—it equates PVVs
along its principal curve internalizing the curvature in h so that

ζ1

(
e−δ

∗
1

)
h′
(
eδ

∗
1−t
)
= ζi

(
e−δ

∗
i (t)
)
h′
(
eδ

∗
i −t
)

∀i ̸= 1, (29)

and the cumulative height stays the same:
∑n
i=1 δ

∗
i (t) = t. Since bidders’ marginal revenue is strictly concave (due

to regularity), we should have δ∗1 ≥ δM1 , which is equivalent to the first point in Proposition 4.
As can be seen from our argument, the only place where the star ordering is used is to conclude that bidder

1’s is favored in the quantile space in Myerson’s auction, which is the same as δM1 ≥ δMi . So, the conclusion of
this proposition holds under much weaker conditions; in fact, x∗1(u) ≥ xM1 (u) for all high enough u without any
extra structure. On the other hand, not much can be said at this level of generality about the bidders other than
the strongest and the weakest one because relative to Myerson’s auction, the optimum simultaneously reallocates
interim winning probability from them (to the strongest bidder) and to them (from the weakest bidder). Which
force dominates depends on those intermediate bidders’ types and fine details of the model.

9 Optimal auctions: going beyond extremality

Thus far, we have constructed the optimal auction in regular environments in which the optimum is extremal, so
that the cumulative height satisfies

∑n
i=1 δi(t) = t along the corresponding principal curve. As shown in Theorem

2, non-extremal reduced forms violate this property. Nevertheless, such violations can be optimal for the auctioneer
even under regularity when Hi exhibits satiation with respect to their interim winning probabilities. In these en-
vironments, rather than excluding bidders from trade once marginal revenue becomes nonpositive, the auctioneer
may optimally continue allocating the good while keeping

∑n
i=1 δi(t) < t at the bottom of the principal curve.

To illustrate the economic force behind non-extremality, consider an IPV model with CRA preferences and a
single bidder whose certainty equivalent is quadratic, and whose type is uniformly distributed on the unit interval, so
thatH(x, u) = xu−(1−u)x2. With a single bidder, the feasibility constraint is vacuous, and the problem reduces
to maximizing

∫ 1

0
H(x(u), u) in the space of CDFs. Due to strict concavity and supermodularity, the optimum x∗

can be obtained using the pointwise first-order condition that gives

x∗(u) = min

{
1

2

u

1− u
, 1

}
.

For low types, the optimal allocation assigns winning probability strictly between zero and one. This interior so-
lution reflects the incentive value of reducing information rents by exploiting bidder’s risk aversion. We refer the
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reader to GMSZ-CRA for an excellent treatment of such settings in the x-space and additional economic intuition,
and highlight their implications for the optimal control in the δ-space.

Direct calculations show that ∂
∂δR(δ, t) = e−δ − 2(1 − e−δ)eδ−t so that the auctioneer’s optimal control

problem in Proposition 1 can be restated as

max
δ

∫ ∞

0

e−tR(δ(t), t)dt s.t. δ′ ∈ [0, 1], δ(0) = 0.

Relaxing this problem by replacing δ′(t) ∈ [0, 1] with the weaker requirement of δ(t) ∈ [0, t], one can again solve
such relaxation using the pointwise first-order conditions and obtain δ∗(t) = t with ∂

∂δR(δ
∗(t), t) > 0 below

a certain threshold and δ∗(t) < t with ∂
∂δR(δ

∗(t), t) = 0 above that threshold. This latter region corresponds
precisely to types for which the induced interim winning probability lies strictly between zero and one. Thus, in
contrast to the extremal case studied above—where the optimal policy freezes once marginal revenue becomes non-
positive—here, the principal curve continues to move while the winning probability is smoothly reduced.

The same phenomenon can arise with multiple (possibly asymmetric) bidders. In such cases, the optimal mecha-
nism may again be non-extremal, with probability allocated at a strictly lower rate than the feasibility frontier allows.
Nevertheless, the structure uncovered in the extremal case remains informative: optimal allocations continue to be
organized by marginal revenue equalization, but are implemented through more flexible allocation rules. In what
follows, we formalize this idea using fractional score allocations, which generalize score-based mechanisms by allow-
ing the auctioneer to scale winning probabilities while preserving the ranking induced by scores.

Definition 2. An allocation z is a fractional score allocation if there exists a tuple of scores q in the sense of Defi-
nition 1 and a tuple of right-continuous functions r = (r1, . . . , rn) : [0, 1] → [0, 1]n such that

zi(u) =

ri(ui) if qi(ui) > maxj ̸=i qj(uj),

0 otherwise.
(30)

Fractional score allocations naturally generalize score allocations by allowing bidder i’s winning fractionri(ui)
to be different from 1q−1

i (R+)(ui). That is, the ranking of bidders is still determined by scores, but the probability
with which the highest-ranked bidder receives the object may be strictly less than one. Equipped with this definition,
we can now characterize the optimal mechanism beyond extremality

Theorem 5. Consider a regular environment, and define a cutoff time T as in Proposition 3. If for each bidder i, the
function δ†i : [T,∞) → R defined by ∂

∂δRi
(
δ†(t), t

)
= 0 is weakly increasing with the derivative of at most one,

then the auctioneer’s problem admits an optimal reduced form x∗ whose δ-transforms δ∗ coincide with δ♯ on [0, T )

and δ† on [T,∞).27 Furthermore, this reduced can be induced by the fractional score allocation with scores q∗ of the
form in Equation (25) and fractions r∗ given by

r∗i (ui) =

1 ui ≥ e−δ
∗
i (T ),

x†
i (ui)

x♯
i(ui)

otherwise,
(31)

wherex♯i is the interim winning probability induced by the score allocation with scores q∗, andx†i is obtained by reverting
δ†i using (16).28

27Since p♯(T ) = 0, we have δ♯(T ) = δ†(T ), and so δ∗ is absolutely continuous due to uniqueness of both δ♯, δ† under regularity.
28As a convention, we set 0/0 = 0 in (31).
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Theorem 5 extends the characterization of optimal auctions to regular environments in which the optimal re-
duced form is not extremal. The additional monotonicity condition imposed on the function δ†i ensures that, once
bidder i’s marginal revenue reaches zero, it becomes optimal to progressively reduce the rate at which winning prob-
ability is assigned to that bidder. It is easy to see that this condition holds wheneverHi is concave in its first argument
and supermodular, and thus Theorem 5 applies to the large class of auction models with CRA preferences intro-
duced in GMSZ-CRA.

Economically, the optimum takes the form of a fractional score allocation with scores constructed from (23) and
fractions given by (31).29 This structure implies that bidder i’s interim winning probability satisfies

x∗i (u) =

x
♯
i(u) u ≥ e−δ

∗
i (T ),

x†i (u) otherwise,

where x♯i is the probability induced by the extremal score allocation and x†i is obtained from δ†i via (16). It follows
directly from the first-order condition defining δ†i that x†i (u) coincides with the pointwise maximizer of Hi for
types below the threshold, exactly as in the single-bidder benchmark used to motivate the result.

The mechanism therefore operates in two distinct regimes. At high quantiles, it allocates probability as in the
extremal case, equalizing marginal revenues across bidders along the principal curve. Once the common marginal
revenue reaches zero, the allocation smoothly transitions to the bidder-specific optimum x†i while preserving the
ranking induced by scores. Consequently, unlike the extremal case—where allocation ceases entirely once marginal
revenue becomes non-positive—low types may continue to receive the good with strictly positive probability.

We elaborate on this point in the next section, where we examine the optimal pattern of discrimination in the
CRA-preferences model.

9.1 Application to discrimination in the CRA-preferences model

In this section, we consider the CRA-preferences model and use Theorem 5 to study how the optimal mechanism
favors bidders as a function of their risk attitudes. It turns out that the optimal allocation discriminates against more
risk-averse bidders at high types and against less risk-averse bidders at low types.

To make this comparison as transparent as possible, we assume that all bidders share the same type distribution
F with inverse v = F−1. Bidders belong to one of two groups: risk-neutral and risk-averse. A risk-neutral bidder
has a linear certainty equivalent equal to x, whereas a risk-averse bidder has a strictly convex certainty equivalent
g(x) ≤ x satisfying g(0) = 0, g(1) = 1, g′ > 0, and g′′ > 0. There are k risk-neutral bidders, indexed by
i = 1, . . . , k, and n− k risk-averse bidders, indexed by i = k + 1, . . . , n.

Because the environment is symmetric within each group, the optimal mechanism is group-symmetric as well.
Hence, it suffices to characterize the interim winning probabilities (and their δ-transforms) for a representative risk-
neutral bidder, denoted i = 1, and a representative risk-averse bidder, denoted i = n. As explained above, the
extremal candidate is obtained by solving (23) for δ♯1, δ♯n, and the common marginal revenue p♯:

p = v(e−δ1)− v′(e−δ1)(1− e−δ1) = v(e−δn)− v′(e−δn)(1− e−δn)g′(eδn−t), (32)

and

t = kδ1 + (n− k)δn. (33)

29The optimal allocation is not unique unless it is extremal; implementing it through fractional score allocations is one convenient way to
induce the optimal reduced form.
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Once this solution is constructed, we can similarly obtain the continuation paths δ†1, δ†n and invoke Theorem 5 to
recover the optimal interim winning probabilities x∗1, x∗n.

We are interested in comparingx∗1 andx∗n. Since they are determined through the marginal revenue equalization
condition, the optimal pattern of discrimination depends on comparing ∂

∂xHi, and thus on comparingx′ = 1with
g′. In principle, the difference 1−g′(x)may change sign arbitrarily many times for intermediate values ofx. To gain
traction and deliver a global result, we henceforth assume thatx−g(x) is unimodal, attaining its maximum at some
m ∈ (0, 1). This assumption holds, for instance, in the quadratic specification g(x) = αx2 + (1 − α)x, where
m = 1

2 regardless ofα ∈ (0, 1]. As shown by GMSZ-CRA, the quadratic model is consistent with many important
models of non-expected utility, such as versions of the disappointment-aversion theories of Loomes and Sugden
[1986] and Jia et al. [2001], Kőszegi and Rabin [2006]’s loss-averse utility, and modified mean-variance preferences
[Blavatskyy, 2010].30 Under this assumption, the direction of discrimination becomes monotone in types as shown
in the proposition below.

Proposition 5. Consider the model as above, and assume that the environment is regular. If eachHi is supermodular
and ∂

∂xHi(m,m
1

n−1 ) > 0, then x∗1(u) ⋛ x∗n(u) if and only if u ⋚ m
1

n−1 .

The proposition shows that the optimal mechanism tilts in favor of the more risk-averse bidder at low quantiles
and in favor of the less risk-averse bidder at high quantiles. Intuitively, when types are low, allocating probability to
risk-averse bidders generates relatively smaller information rents. For high types, the concern shifts toward alloca-
tive efficiency, and the mechanism favors bidders whose valuations respond more strongly to additional probabil-
ity—namely, the less risk-averse ones. This reversal of priorities across the type distribution is a direct consequence
of marginal revenue equalization along the optimal principal curve.

Example 3. Consider the quadratic specification with α = 1 and the uniform type distribution so that g(x) = x2

and v(u) = u. To illustrate, fix n = 3.31

When k = 2 (two risk-neutral bidders and one risk-averse bidder), the optimal reduced form satisfies

x∗1(u) =
2u+ 2u2 − 1

2u+ 1/u
· 1[1/2,1](u), x

∗
n(u) =

u

2(1− u)
· 1[0,1/3)(u) +

2− u2 −
√
3− 2u2

2(1− u)2
· 1[1/3,1](u).

Here, T is finite, and low types of the risk-averse bidder receive their (unconstrained) optimal interim winning proba-
bility, x∗n(u) = u

2(1−u) , as predicted by Proposition 5.
When k = 1 (one risk-neutral bidder and two risk-averse bidders), the optimal reduced form satisfies

x∗1(u) =
12u2 − 8u+ (2u− 1)3/2

√
10u− 1 + 1

8u2
· 1[1/2,1](u), x

∗
n(u) =

u+ 1

2(1− u) + 2/u
.

In contrast to the previous case, T is infinite and the optimum is extremal.
In both cases, the tipping point in Proposition 5 equals m 1

2 = 1√
2
≈ 0.707, and risk-averse bidders are favored

for u < 1√
2

and disadvantaged for u > 1√
2

.

10 Final remarks

In this paper, we develop new tools to study asymmetric auction settings with unidimensional types, unit demands,
and a single good for sale.

30The unimodality condition also holds for g(x) = x
1+α(1−x)

, which corresponds to Gul’s disappointment-averse preferences [Gul, 1991]
with linear utility over outcomes.

31It is routine to verify that the environment is regular for alln, k (see the appendix for the discussion of regularity in terms of primitives) and
that the added assumptions in Proposition 5 are satisfied.
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We believe that these tools extend well beyond our specific framework and can help analyze other economically
significant problems. One immediate application is information design under privacy constraints in the spirit of He
et al. [2025], who establishes a connection between such information structures and Border-type feasibility in auc-
tion settings. Other potential applications include persuasion, delegation, and related problems studied in Kleiner
et al. [2021] through the lens of symmetric Border-type feasibility.

Extending our approach to feasibility and extremality to more general auction settings is another fruitful direc-
tion for future research. Concretely, our method for identifying the principal curve of tightest feasibility constraints
delivers a sharp characterization of feasibility and an explicit description of extremality. It may extend to settings with
multiunit demands or even multidimensional types. Border-type feasibility characterizations are known in some of
these environments (e.g., see Che et al. [2013]), and our approach may help make them more tractable and opera-
tional.

Our approach to optimality via optimal control may also prove valuable in broader principal–agent models
and in persuasion. Even within our auction framework, we focus on regular environments in which ironing is not
needed, and we illustrate how the results apply to settings with endogenous valuations and non-EU preferences.
This focus is largely due to space constraints. Further developing the economics of optimal mechanisms in these
applications and extending the analysis beyond regular environments are natural next steps.
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A Appendix

A.1 Feasibility

This section proves Theorem 1 and collects basic properties of the principal curve—such as continuity and mono-
tonicity—that are used later. The proof proceeds in two steps. Lemma 1 establishes an integral identity for the
ψ-transform that we use to obtain (9). Lemma 2 is key: it shows that the principal curve characterizes the tightest
Border constraints by studying an auxiliary maximization problem. Combining these lemmas yields Theorem 1.

A.1.1 Preliminaries

Lemma 1. Let x ∈ X . Then, its ψ-transform satisfies

∫ 1

ψ(ι)

x(u)du =

∫ 1

ι

sd lnψ(s) ∀ι ∈ [0, 1].

Proof. Let D be the set of discontinuities of x excluding a possible atom at ψ(0), and recollect that [ψ(0), 1) \D
can be rewritten as a countable union of ordered intervals of the form [al, bl). On each such interval, ux is strictly
increasing and continuous, thus ψ is strictly increasing on the image of this interval. So, we obtain

∫ 1

ψ(ι)

x(u)du =
∑
l

∫ bl

al
1(ψ(ι),1](u)x(u)du

=
∑
l

∫ bl

al
1(ψ(ι),1]ψ

−1(u)d lnu

=
∑
l

∫ ψ−1(bl)

ψ−1(al)

1(ι,1](s)sd lnψ(s)

=

∫ 1

ι

sd lnψ(s).

The second line invokes the definition of ψ and its properties. Specifically, on any continuity interval [al, bl) ⊆
[ψ(0), 1), we have ψ−1(u) = ux(u), hence x(u)du = ψ−1(u)d lnu. The third line is due to the change of vari-
ables of integration, i.e., u = ψ(s). Finally, the last line follows from the fact thatψ is constant on the complement
of intervals of the form [ψ−1(al), ψ−1(bl)).

Lemma 2. Letx be a reduced form. Denote itsψ-transforms byψ, and setψ = n
√∏n

i=1 ψi. Consider the following
maximization problem parameterized by s ∈ [0, 1]:

G(s) = max
u∈[0,1]n

sn +

n∑
i=1

∫ 1

ui

xi(u)du s.t.
n∏
i=1

ui ≥ sn. (34)

Then:

1. The value of the principal curve at s, which is given by νi(s) = ψi

(
ψ
−1

(s)
)

, is optimal in (34) and uniquely
optimal whenever s ∈ [ψ(0), 1], s > 0.

2. The principal curve itself is continuous, constant on [0, ψ(0)) and strictly increasing in at least one coordinate
on the complement of that set.
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Proof. To begin, remark that, for each s ∈ (0, 1), the problem determiningG is concave and can be solved through
the following necessary (and sufficient due to concavity) first-order conditions:

λ

n∏
j=1

uj ∈ [xi(ui−)ui, xi(ui)ui],

where λ is the Lagrange multiplier on the constraint.
Ifλ > 0, then the constraint binds, so sn =

∏n
i=1 ui. It follows that the first-order conditions can be rewritten

as
ui = ψi(λs

n).

Taking the geometric mean across bidders gives s = ψ(λsn), and therefore s ≥ ψ(0) due to monotonicity of ψ.
On the other hand, if λ = 0, the first-order conditions require

ui ∈ [0, ψi(0)],

which implies s ≤ ψ(0).
Equipped with this description of the first-order conditions, we now prove the first part of the lemma distin-

guishing between various values of the parameter s.
Case s ∈ (ψ(0), 1). As shown above, we must haveλ > 0 so that s = ψ(λsn). The largest Lagrange multiplier

with this property can be obtained by taking the generalized inverse ofψ, that isλsn = ψ
−1

(s), which implies that

νi(s) = ψi

(
ψ
−1

(s)
)

is a solution to the maximization problem that definesG for s > ψ(0). Since each ψi is constant on every interval
on which ψ is constant, if λ̃ ∈ (0, λ) so that s = ψ(λ̃sn), then νi(s) = ψi(λ̃s

n), which shows that ν(s) is a
unique maximizer.

Case s ∈ (0, ψ(0)]. By construction, νi(s) = ψi(0) satisfies the first-order conditions with λ = 0, thus it is
optimal. Clearly, this point is unique one with that property for s = ψ(0).

Case s = 1. Remark that the only feasible point in the auxiliary problem is

ν(1) = (1, ..., 1),

and thus it is uniquely optimal.
Case s = 0. Note that the constraint in the auxiliary problem has no bite. By construction, xi = 0 on

[0, ψi(0)), as a result
ν(0) = (ψ1(0), ..., ψn(0))

maximizes the objective in (34) when the constraint is ignored.
As for the second part of the lemma, both the continuity and constancy of the principal curve on [0, ψ(0))

directly follow from its definition and the description above. Finally, take s < s in [ψ(0), 1]. By construction, the
principal curve is weakly increasing, and thus ν(s) ≤ ν(s). Using the fact the constraint in the auxiliary problem
holds as equality at both points, we obtain

n∏
i=1

νi(s) = sn < sn =

n∏
i=1

νi(s),
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which shows that νi(s) < νi(s) for at least one coordinate establishing strict monotonicity of the principal curve
on [ψ(0), 1].

A.1.2 Proof of Theorem 1

Proof. In (34), sn is fixed in the objective, so decreasing ui increases
∫ 1

ui
xi(u)du due to monotonicity of xi. As a

result, an optimizer can be taken with the product constraint binding, which gives

G(s) = max
u∈[0,1]n

B(u) s.t.
n∏
i=1

ui = sn

for each s ∈ [0, 1]. As a result, a reduced form x is feasible if and only if the function G never exceeds 1. As
explained in Lemma 2,G is strictly increasing on [0, ψ(0)) and the value of Border’s constraint along the principal
curve satisfies

B(ν(s)) = G
(
max{s, ψ(0)}

)
. (35)

Taking these observations together, we conclude that a reduced formx is feasible if and only if the functionB never
exceeds 1 along the principal curve.

To see the second part of the theorem, remark that

n∑
i=1

∫ 1

νi(s)

xi(u)du =

n∑
i=1

∫ 1

ψ
−1

(s)

ιd lnψi(ι)

=n

∫ 1

ψ
−1

(s)

ιd lnψ(ι),

where the first line is due to the definition of the principal curve and Lemma 1, whereas the second follows from the
definition of ψ as the geometric average of individual ψ-transforms. Then, Equation (9) ensues from combining
this integral representation of

∑n
i=1

∫ 1

νi(s)
xi(u)duwith

∏n
i=1 νi(s) =

(
max{s, ψ(0)}

)n
.

A.2 Extremality

In this section, we study extremality of reduced forms and prove Theorems 2, 3. We show two theorems in conjunc-
tion to each other establishing three statements in the following order:

Statement I. If a feasible reduced formx is extremal, then Border’s constraint binds along the principal curve,
or equivalently (11) is verified.

Statement II. If a feasible reduced form x satisfies (11), then it can be induced by scores as described in Theo-
rem 3.

Statement III. If a feasible reduced form x can be induced by scores as described in Theorem 3, then it is
extremal.

Statement I corresponds to the "only if" direction of Theorem 2, and the other two statements establish Theorem 3
provided that Statement I had been shown. Taken together, I-III imply the "if" direction of Theorem 2.

The most challenging part of the analysis is the first statement, which says Border’s constraint binds along the
principal curve for extremal reduced forms. In view of Lemma 2 and the proof of Theorem 1, this is equivalent to
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the functionG, which is defined in (34), to satisfy

G(s) = 1 ∀s ∈ [ψ(0), 1].

This condition is equivalent to non-existence of a sag, that is an open interval (s, s) in [ψ(0), 1] on which G is
strictly less than 1.

For each feasible (potentially non-extremal) reduced formx, if the set of sags is non-empty, then, sinceG(1) = 1

andG < 1 on [0, ψ(0)), there are two mutually exclusive and exhaustive cases:

1. There exists a sag so thatG equals 1 at its endpoints.

2. There exists a sag that starts at ψ(0) and ends at s so thatG equals 1 on [s, 1].

We shall show both cases are inconsistent with extremality ofx, thereby establishing that no extremal reduced form
admits a sag. To this end, we first state and prove six auxiliary lemmas that record various properties of elements of
the feasible set and its extreme points. With these tools in hand, we then prove the two theorems stated in Section 6.

A.2.1 Preliminaries

Lemmas 3 and 4 show that certain modifications of a feasible reduced form leave (some of) Border’s constraints
unchanged. For brevity, when we need to emphasize the dependence on the reduced form, we writeBx for Border’s
constraint in (6) corresponding to x.

The other three lemmas in this section study sags of extremal reduced forms. Specifically, Lemma 5 establishes
that xi is piecewise-constant with finitely many jumps along a sag of the principal curve, and Lemmas 6, 7 discuss
jumps at the endpoints of the sag. Finally, Lemma 8 shows that any sag corresponds to a non-trivial portion of the
principal curve. Throughout this analysis, we use the following notation. Given a reduced form x, and two cutoffs
u < u, define the set of jumps of xi in [u, u] by

Di(u, u) = {u ∈ [u, u] : xi(u−) ̸= xi(u)}

with convention xi(0−) = 0. We extend the definition ofDi to degenerate intervals by setting

Di(u, u) = {u}.

Lemma 3 (Perturbations at the bottom of the type space). Letx be a feasible reduced form that satisfiesBx(u) = 1

for some u ∈ [0, 1]n,
∏n
i=1 ui > 0. Consider ∆ = (∆1, ...,∆n) with ∆i : [0, 1] → R such that x + ∆ is a

reduced form, ∆ ̸= 0, ∆i(u) = 0 on (ui, 1] for each i. Then, x+∆ is feasible if and only if

Bx+∆(u) ≤ 1 ∀u s.t. 0 ≤ u ≤ u. (36)

Proof. The “only if” direction is immediate, so we focus on the converse. Specifically, suppose that (36) holds. We
now show thatx+∆ is feasible, meaning that the inequality in (36) holds for allu other than 0 ≤ u ≤ u. To this
end, we distinguish between several cases.

Case
∏n
i=1 ui = 0. In this case,

Bx+∆(u) ≤
n∑
i=1

∫ 1

0

(xi(u) + ∆i(u))du = Bx+∆(0) ≤ 1,
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where the first inequality holds because
∏n
i=1 ui = 0, xi +∆i ≥ 0, and the last inequality follows from (36).

Conversely, supposeu ∈ [0, 1]n is such that
∏n
i=1 ui > 0 andui > ui precisely for the firstk ̸= 0 coordinates,

i.e., i = 1, ..., k—after relabeling if necessary.
Case k = n. Sinceu ≥ u, we have

∫ 1

ui
∆i(u)du = 0 for each i ∈ N , and hence

Bx+∆(u) = Bx(u) ≤ 1.

Case k < n. Set a1 =
∏k
i=1 ui, a1 =

∏k
i=1 ui, a2 =

∏n
i=k+1 ui, and a2 =

∏n
i=k+1 ui.

Since x is feasible andBx(u) = 1, we have

Bx (u1, ..., uk, uk+1, ..., un) ≤ Bx(u),

which expands to

a1 · a2 +
k∑
i=1

∫ 1

ui

xi(u)du ≤ a1 · a2 +
k∑
i=1

∫ 1

ui

xi(u)du. (37)

Next, consider evaluatingBx+∆ at (u1, ..., uk, uk+1, ..., un). Using ∆i(u) = 0 for u > ui, we obtain

a1 · a2 +
k∑
i=1

∫ 1

ui

xi(u)du+

n∑
i=k+1

∫ 1

ui

xi(u)du+

n∑
i=1

∫ 1

ui

∆i(u)du ≤ 1, (38)

due to (36).
Since a1 ≥ a1 and a2 ≤ a2, we have (a1 − a1) · (a2 − a2) ≤ 0, i.e.,

a1 · a2 ≤ a1 · a2 + a1 · a2 − a1 · a2.

Combining this inequality with (37) and (38), we conclude that

Bx+∆(u) = a1 · a2 +
n∑
i=1

∫ 1

ui

xi(u)du+

n∑
i=1

∫ 1

ui

∆i(u)du

≤ a1 · a2 + a1 · a2 − a1 · a2 +
n∑
i=1

∫ 1

ui

xi(u)du+

n∑
i=1

∫ 1

ui

∆i(u)du

≤ a1 · a2 +
k∑
i=1

∫ 1

ui

xi(u)du+

n∑
i=k+1

∫ 1

ui

xi(u)du+

n∑
i=1

∫ 1

ui

∆i(u)du

≤ 1,

as claimed.

where the first line follows from the definitions ofBx+∆, the second one uses

Lemma 4 (Perturbations in the middle of the type space). Let x be a feasible reduced form that satisfiesBx(u) =

Bx(u) = 1 for some u,u ∈ [0, 1]n such that
∏n
i=1 ui > 0, u ̸= u, u ≤ u. Consider ∆ = (∆1, ...,∆n) with

∆i : [0, 1] → R such that x+∆ is a reduced form, ∆ ̸= 0, ∆i(u) = 0 on [0, ui) ∪ (ui, 1] for each i, and

n∑
i=1

∫ ui

ui

∆i(u)du = 0.
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Then, x+∆ is feasible if and only if

Bx+∆(u) ≤ 1 ∀u s.t. u ≤ u ≤ u. (39)

Proof. In view of Lemma 3, the reduced form x + ∆ is feasible if and only if (36) holds. We thus need to show
that (36) is satisfied if and only if (39) holds. The "only if" direction is immediate, so we focus on the converse, again
distinguishing between several cases.

Case
∏n
i=1 ui = 0. In this case,

Bx+∆(u) ≤
n∑
i=1

∫ 1

0

(xi(u) + ∆i(u))du = Bx(0) ≤ 1,

where the first inequality holds because
∏n
i=1 ui = 0,xi+∆i ≥ 0, the equality follows from

∑n
i=1

∫ 1

0
∆i(u)du =

0, and the last inequality follows from feasibility of x.
Now, suppose u ≤ u is such that

∏n
i=1 ui > 0 and ui < ui precisely for the first k ̸= 0 coordinates, i.e.,

i = 1, ..., k—after relabeling if necessary.
Case k = n. Sinceu ≤ u, it follows that

∑k
i=1

∫ 1

ui
∆i(u)du = 0, and hence

Bx+∆(u) = Bx(u) ≤ 1.

Case k < n. The argument is identical to the one in the proof of Lemma 3 but replaces u with u. Setting
a1 =

∏k
i=1 ui, a1 =

∏k
i=1 ui, a2 =

∏n
i=k+1 ui, a2 =

∏n
i=k+1 ui, and repeating the same steps as before, we

can obtain

a1 · a2 +
k∑
i=1

∫ 1

ui

xi(u)du ≤ a1 · a2 +
k∑
i=1

∫ 1

ui

xi(u)du,

a1 · a2 +
k∑
i=1

∫ 1

ui

xi(u)du+

n∑
i=k+1

∫ 1

ui

xi(u)du+

n∑
i=1

∫ 1

ui

∆i(u)du ≤ 1,

a1 · a2 ≤ a1 · a2 + a1 · a2 − a1 · a2.

Combining these inequalities yields the desired result:

Bx+∆(u) ≤ 1.

Lemma 5 (Structure along a sag). Let x be an extremal reduced form. Consider a sag (s, s). Then, for each i such
that νi(s) < νi(s), the function xi is piecewise-constant on [νi(s), νi(s)] with finitely elements inDi

(
νi(s), νi(s)

)
,

i.e., xi takes finitely many values.

Proof. Let i be such that νi(s) < νi(s). There are two mutually exclusive possibilities: either all (weak) lower
contour sets of xi are open in

(
νi(s), νi(s)

)
, i.e.,

{
u ∈

(
νi(s), νi(s)

)
|x(u) ≤ x(u)

}
is open ∀u ∈

(
νi(s), νi(s)

)
, (40)

or there exists at least one such lower contour set that is not open. In what follows, we first prove that the second
case cannot occur given that x is extremal in two logical steps, and then complete the proof in one additional step.
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Step 1. Towards a contradiction, suppose that (40) is violated at u, i.e., the associated lower contour set equals(
νi(s), u

]
. This means that there exists a closed interval [u, u] compactly contained in

(
νi(s), νi(s)

)
such that

xi(u) > xi(u) for all u ∈ (u, u]. Denote the value in

max
u∈[0,1]n

B(u) s.t. ui ∈ [u, u].

by ω. Since x is feasible, we have ω ≤ 1. We now show that ω is strictly less than one.
Suppose, for contradiction, that ω = 1. Let u a maximizer that attains ω and set s ∈ [0, 1] so that sn =∏n

i=1 ui. By definition of the auxiliary problem in (2),G(s) is an upper bound on ω. This bound is tight because
x is assumed to be feasible, i.e., G ≤ 1, and ω = 1. Since G is strictly less than one on [0, ψ(0)), we must have
s ≥ ψ(0), thus

B(u) = G(s) = B(ν(s))

due to (35) in the proof of Theorem 1.
SinceG is strictly less than one on (s, s), we cannot have s ∈ (s, s). By monotonicity of the principal curve,

νi(s) ≤ νi(s) < u

whenever s ≤ s, and
νi(s) ≥ νi(s) > u

whenever s ≥ s. In either case, we obtain νi(s) ̸∈ [u, u]. As a result, u ̸= ν(s) contradicting the uniqueness of
the optimizer stated in Lemma 2. Therefore, we conclude that ω < 1, as claimed.

Step 2. We now construct a perturbation ∆ : [0, 1] → Rn so that x± ε∆ is a feasible reduced form provided
that ε > 0 is small enough. The existence of such perturbation contradicts extremality ofx, thereby ruling out the
existence of an non-open lower contour set.

First of all, for each j ̸= i, set ∆j = 0. As shown in the proof of Theorem 1 in Kleiner et al. [2021], there exists
a number x∗ ∈ [xi(u), xi(u)] and [u∗, u∗] contained in that interval so that ∆i defined by

∆i(u) =



xi(u)− xi(u) u ∈ [u, u∗),

x∗ − xi(u) u ∈ [u∗, u∗),

xi(u)− xi(u) u ∈ [u∗, u],

0 u ̸∈ [u, u]

is such that ∆i ̸= 0, xi ±∆i is in X , and
∫ u
u
∆i(u)du = 0. In fact, Kleiner et al. [2021] provided a closed-form

expression for the endpoints of the subinterval used above:

u∗ = inf
u∈[u,u]

u s.t. 2xi(u) ≥ xi(u) + x∗,

u∗ = inf
u∈[u,u]

u s.t. 2xi(u) ≥ xi(u) + x∗

and proved that the value of x∗ making
∫ u
u
∆i(u)du = 0 (provided the endpoints chosen as above) is well-defined

defined.
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Set
ε =

1− ω

maxui∈[u,u]

∣∣∣∫ uui
∆i(u)du

∣∣∣ > 0

and choose ε ∈ (0, 1) such that ε ≤ ε. Then, for everyu ∈ [0, 1]n with ui ∈ [u, u], we have

Bx±ε∆(u) ≤ Bx(u) + ε

∣∣∣∣∫ 1

ui

∆i(u)du

∣∣∣∣ ≤ Bx(u) + (1− ω) .

Since Bx(u) ≤ ω for every u ∈ [0, 1]n with ui ∈ [u, u] and Bx±ε∆(u) = Bx(u) ≤ 1 for every u ∈ [0, 1]n

with ui ̸∈ [u, u], the reduced form x ± ε∆ is feasible. However, since x is assumed to be an extreme point of the
feasible set, this contradicts extremality. Therefore, no such interval [u, u] can exist.

To sum up, we have shown all (weak) lower contours sets of xi are open in
(
νi(s), νi(s)

)
. This means that xi

is piecewise-constant and its set of jumpsDi

(
νi(s), νi(s)

)
is well-ordered in reverse, i.e., every its nonempty subset

admits the largest element, and so we can meaningfully talk about consecutive jumps in that set.
Step 3. To conclude the proof, we need to show that it is finite. By the way of contradiction, suppose xi admits

three consecutive jumps points in
(
νi(s), νi(s)

)
denoted u < u∗ < u. Similarly to the previous step, we rule out

this possibility by explicitly constructin a perturbation ∆ = (∆1, ...,∆n) : [0, 1] → Rn so that x ± ε∆ is a
feasible reduced form provided that ε > 0 is small enough.

First of all, for each j ̸= i, set ∆j = 0. For coordinate i, set

∆i(u) = κ ·
(
1[u,u∗)(u)

u∗ − u
−

1[u∗,u)(u)

u− u∗

)
(41)

for some κ > 0 small enough to ensure ∆i ̸= 0 and xi ±∆i ∈ X , e.g., any choice such that

κ

u∗ − u
≤ xi(u)− xi(u−),

κ

u∗ − u
+

κ

u− u∗
≤ xi(u

∗)− xi(u
∗−),

κ

u− u∗
≤ xi(u)− xi(u−)

will do.
Then, applying the same argument as in the previous construction, we conclude that the perturbed reduced

form x ± ε∆ is feasible for sufficiently small ε > 0. This contradicts extremality of x, and hence no such triple
jump structure can exist.

Lemma 6 (Discontinuity at the top of a sag). Let x be an extremal reduced form. Consider a sag (s, s) satisfying
G(s) = 1. Then,

νi(s) ∈ Di

(
νi(s), νi(s)

)
∀i,

i.e., xi is discontinuous at νi(s) whenever νi(s) < νi(s).

Proof. Fix an index iwith νi(s) < νi(s), and suppose, towards a contradiction, that xi is continuous at νi(s). We
distinguish between two cases.

Case νi(s) < 1. Clearly, we have s < 1. For s near s, define u(s) by keeping all coordinates except i fixed at
their values on the principal curve at s, that is uj(s) = νj(s) for j ̸= i, and adjusting coordinate i to satisfy the
product constraint:

ui(s) =
νi(s)

sn
sn.

By construction,
∏n
j=1 uj(s) = sn, so u(s) is feasible in the optimization problem that defines G(s) in Lemma
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2. Hence,G(s) ≥ G(s), whereG(s) is the objective evaluated atu(s):

G(s) = sn +

n∑
j=1

∫ 1

uj(s)

xj(u)du = sn +

∫ 1

νi(s)

sn sn
xi(u)du+

∑
j ̸=i

∫ 1

νj(s)

xj(u)du. (42)

On the one hand, G(s) = G(s) = 1. On the other hand, since (s, s) is a sag, we have G(s) ≤ G(s) < 1 for
s < s.

By Lemma 5, the function xi is piecewise-constant on [νi(s), νi(s)] with finitely many jumps. Since, xi is
assumed to be continuous at the right end point, it is constant on a left neighborhood of this point. Consequently,G
is an affine function ofsn fors < s. ButG(s) < G(s) fors < s, meaning that the (left) slope of this affine function
is strictly positive, thereforeG(s) > 1 fors > s. This implies thatG(s) strictly exceeds1 contradictingG ≤ G ≤ 1

on a right neighborhood of s, as required by feasibility. Thus, we conclude that xi cannot be continuous at νi(s).
Case νi(s) = 1. The argument is virtually identical to the previous case, with the only difference that now

xi(1) = 1 and continuity at νi(s) = 1 implies xi(u) = 1 on a left neighborhood of 1. Hence, for s < s close
enough to s, the same construction of u(s) and the same lower bound G in (42) apply, and G is affine in sn on a
left neighborhood of s. Its (left) slope equals

∂

∂sn
G(s−) = 1− νi(s)

sn
xi(νi(s)) = 1− 1

sn
≤ 0.

SinceG(s) = G(s) = 1, linearity and the nonpositive slope imply thatG(s) ≥ 1 for all s < s close enough to s
contradicting that (s, s) is a sag. Therefore, xi must be discontinuous at νi(s) = 1.

Lemma 7 (Discontinuity at the bottom of a sag). Letx be an extremal reduced form. Consider a sag (s, s) satisfying
G(s) = 1 with s > 0. Then,

νi(s) ∈ Di

(
νi(s), νi(s)

)
∀i,

i.e., xi is discontinuous at νi(s) whenever νi(s) < νi(s).

Proof. Let i be such that νi(s) < νi(s). Since s > 0, it must be the case that νi(s) > 0. The argument is identical
to the first case in the proof of Lemma 6. Specifically, suppose, for contradiction, that xi is continuous at νi(s).
Then, the lower boundG is well-defined in a neighborhood of s, and we have

∂

∂sn
G(s−) =

∂

∂sn
G(s+) = 1− νi(s)

sn
xi(νi(s)) < 0,

where the equality follows from the continuity of xi at νi(s), and the inequality follows from the fact that xi is
constant in a right neighborhood of νi(s), together with the assumption that G ≤ G < 1 on (s, s). But this
implies that G ≥ G > 1 on a left neighborhood of s, contradicting feasibility. Therefore, xi is discontinuous at
νi(s).

Lemma 8 (Non-triviality along a sag). Let x be a feasible reduced form. Consider a sag (s, s). Then, we have (1)
νi(s) < νi(s) for at least one index i; and (2) it is true for at least two such indices whenever G equals 1 at the
endpoints of the sag.

Proof. The first part of this claim has been established in Lemma 2, and so we focus on the second part.
Suppose, for contradiction, that νi(s) < νi(s) but νj(s) = νj(s) for all j ̸= i. For each such j ̸= i, since u∗j
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is increasing, νj equals to νj(s) on [s, s]. Therefore, for all s ∈ [s, s], we have

νi(s) =
1∏

j ̸=i νj(s)
sn =

νi(s)

sn
sn.

It follows that G(s) equals G(s) defined in (42) for all s ∈ [s, s]. Clearly, G is a concave function of sn on the
respective interval. SinceG(s) = G(s) = 1, it must be thatG = 1 on (s, s) due to concavity. This contradicts the
premise of the claim, completing the proof by contradiction.

A.2.2 Proofs of Theorems 2 and 3: Statement I

Proof. Letx be an extremal reduced form. As explained above, there are two mutually exclusive cases, namely I and
II. We now analyze each in detail starting with the latter.

Case 2 with s > ψ(0). Assume G < 1 on [ψ(0), s) and G = 1 on [s, 1] for some s > ψ(0). As explained in
Lemma 2, we also know thatG is strictly increasing on [0, ψ(0)), and thusG < 1 on that interval.

To simplify notation, set u = ν(s) and u = ν(ψ(0)). Since s > 0, we have
∏n
i=1 ui > 0. Lemmas 5 and 6

jointly imply that for each iwith ui < ui, the function xi is piecewise-constant on this interval with finitely many
jumps. Furthermore, the upper endpoint is a discontinuity point, i.e., ui ∈ Di(ui, ui). Since xi = 0 on [0, ui),
by construction, it follows that the discontinuity points up to ui are the same whether one starts at ui or 0:

Di(ui, ui) = Di(0, ui).

Step 1. To begin, we show that there exists an index i for which the discontinuity setDi(0, ui) contains at least
two elements. Suppose, towards a contradiction, that

Di(0, ui) = {ui} ∀i.

This means that xi = 0 on [0, ui). Since, by the definition of the transformationψi, the function xi(u) > 0 if and
only if u ≥ ψi(0), the upper endpoint ui is not lower than ψi(0) for all i. As a result,

s = n

√√√√ n∏
i=1

ui ≤ ψ(0),

contradicting the assumption that s > ψ(0).
Step 2. Next, fix i such thatDi(0, ui) contains at least two elements, which exists due to the argument above. To

rule out the second case with s > ψ(0), we construct a perturbation ∆ : [0, 1] → Rn so thatx± ε∆ is a feasible
reduced form provided ε > 0 is small enough. As in the proof of Lemma 5, the existence of such ∆ contradicts
extremality.

To this end, let u∗, u∗ be the last two points inDi(0, ui), whereu∗ = u)i as explained above. Denote the value
of

max
u∈[0,1]n

Bx(u) s.t. u ∈
n∏
j=1

Dj(0, uj), u ̸= u

by ω. Due to finiteness of bidders’ discontinuity sets andG < 1 on [0, s), ω is well-defined and strictly below 1.
First of all, for each j ̸= i, set ∆j = 0. For coordinate i, set

∆i(u) = κ ·
1[u∗,u∗)(u)

u∗ − u∗
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for some κ > 0 small enough to ensure xi ±∆i ∈ X . For example, the choice analogous to (41) will do.
Next, pick any choose ε ∈ (0, 1) such that ε ≤ ε, where

ε =
1− ω

maxui∈[u∗,u∗]

∣∣∣∫ u∗

ui
∆i(u)du

∣∣∣ > 0.

Since x is piecewise constant on [0,u], the mapping

uj ∈ [0, uj ] 7→ Bx±ε∆(u)

is piecewise linear holding other coordinates (u1, ..., uj−1, uj+1, ..., un) fixed in
∏
k ̸=j [0, uk] As a result, (36) is

equivalent to

Bx±ε∆(u) ≤ 1, ∀u ∈
n∏
j=1

Dj(0, uj). (43)

By construction, our perturbation ∆ verifies (43) at all jump points including u (due to the definition of ∆), and
hence (36) holds as well. But then Lemma 3 implies that x± ε∆ is feasible, which contradicts extremality of x.

To sum up, we have shown that Case 2 with s > ψ(0) is inconsistent with extremality. We now turn to Case 1,
where we consider a sag (s, s) so thatG equals 1 at its endpoints. As before, we denote u = ν(s) and u = ν(s),
which satisfy

∏n
i=1 ui > 0 due to s > 0 and

∏n
i=1 ui > 0 whenever s > 0. Below, we study s > 0 and s = 0

separately Lemma 7 does not cover the latter.
Case 1 with s > 0. By Lemmas 5, 6, 7, for each i with ui < ui, the function xi is piecewise-constant on this

interval with finitely many jumps including ui, ui.
By Lemma 8, we can find two distinct coordinates i ̸= j such that ui < ui and uj < uj . Following the logic

of Step 2, we shall construct a perturbation to contradict that extremality of x assumed in the premise.
Let u∗i , u∗i and u∗j , u∗j be the last two points Di(ui, ui) and Dj(uj , uj), respectively, where u∗i = ui and

u∗j = uj . As before, denote the value of

max
u∈[0,1]n

Bx(u) s.t. u ∈
n∏
k=1

Dk(uk, uk), u ̸= u,u.

by ω, which is again well-defined and strictly less than 1 due toG < 1 on (s, s).
Now, define a perturbation∆ : [0, 1] → Rn by setting∆k = 0 for all indicesk other than i, j. For coordinates

i and j, set

∆i(u) = κ ·
1[u∗

i ,u
∗
i )(u)

u∗i − u∗i
, ∆j(u) = −κ ·

1[u∗
j ,u

∗
j )(u)

u∗j − u∗j

for some κ > 0 small enough to ensure xi ± ∆i ∈ X and xj ± ∆j ∈ X . For example, the minimum of two
values defined analogously to (41) for coordinates i amd j will suffice.

Note that ∫ ui

ui

∆i(u)du+

∫ uj

uj

∆j(u)du = 0,

which implies

Bx±ε∆(u) ≤ 1 ∀u ∈
n∏
k=1

Dk(uk, uk), (44)

41



for all ε ∈ (0, 1) such that ε ≤ ε, where

ε =
1

2

1− ω

max
{
maxui∈[u∗

i ,u
∗
i ]

∣∣∣∫ u∗
i

ui
∆i(u)du

∣∣∣ ,maxuj∈[u∗
j ,u

∗
j ]

∣∣∣∫ u∗
j

uj
∆j(u)du

∣∣∣} > 0.

Since each function xk is piecewise constant on [uk, uk], the argument in Case 2 implies that (44) is equivalent to
(39). We conclude that x± ε∆ is feasible due to Lemma 4, which contradicts extremality of x.

Case 1 with s = 0. Since s = 0, we have G(0) = 1 which means ψ(0) = 0 because G < 1 on [0, ψ(0)) due
to Lemma 2 and the proof of Theorem 1. Since xi = 0 on [0, ui), the discontinuity points up to ui are the same
whether you start at ui or 0, exactly as happens in Case 2. By the first step in the proof of this case, the discontinuity
set Di(0, ui) contains at least two points for some index i. Furthermore, by the second step, there cannot be two
such indices, hence we have

Dj(0, uj) = {uj} ∀j ̸= i.

We proceed in two logical steps. First, we argue thatDi(0, ui)must contain at least three elements, and then we
complete the proof by ruling out this possibility as well.

Step 1. By the way of contradiction, suppose that Di(0, ui) contains exactly two discontinuity points, where
one of them is necessarily ui due to Lemma 6. Let u∗i < ui be the other discontinuity of xi.

Suppose first that u∗i > 0 is strictly positive. Then, for each sufficiently small s > 0, i.e., any value strictly less
than n

√
u∗i
∏
j ̸=i uj will do, we have

G(s) = sn +

n∑
j=1

∫ 1

0

xj(u)du

because xj = 0 on [0, uj) for all j other than i. But this implies that

n∑
j=1

∫ 1

0

xj(u)du < 1

contradicting the fact thatG(s) = 1, since ψ(0) = s = 0.
It follows that we must have u∗i = 0, meaning that xi jumps at u = 0 and u = ui. Let χ denote the size of the

first jump, that is the constant value of xi on the whole interval [0, ui). Recollect thatG equals 1 at the endpoints
of the sag (s, s), which can be expressed as

ui · χ+

n∑
j=1

∫ 1

uj

xj(u)du = ui ·
∏
j ̸=i

uj +

n∑
j=1

∫ 1

uj

xj(u)du = 1. (45)

One immediate implication of (45) is that the jump size of xi satisfies

χ =
∏
j ̸=i

uj .

Take any s ∈ (0, s) and consideru that equalsu for all coordinates but

ui =
ui
sn
sn.
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Evaluate Border’s constraint at this point to obtain

B(u) = sn + (ui − ui) · χ+

n∑
j=1

∫ 1

uj

xj(u)du = 1,

where the last equality follows from the definition of χ, ui, and (45). Since u is feasible in the problem defining
G(s) in Lemma 2, we must haveG(s) = 1, which contradicts the assumption thatG < 1 on (s, s) as s = 0.

Step 2. We have established that there are at least three elements in Di(0, ui). To conclude the proof, we shall
again invoke a perturbational argument that has been extensively used earlier in this proof as well as to establish the
auxiliary lemmas.

Let u∗i < u∗i < ui be the last three such points, where the fact that xi jumps at the right endpoint is due to
Lemma 6. Denote the value in the following program

max
u∈[0,1]n

Bx(u) s.t. u ∈
n∏
j=1

Dj(0, uj), u ̸= u,u

by ω, which is well-defined because each discontinuity set is finite, and is is strictly less than one becauseG < 1 on
the interior of the sag.

Consider a perturbation ∆ : [0, 1] → Rn used in the proof of the second part of Lemma 5, that is ∆j = 0 for
all j ̸= i, whereas for coordinate i, we have

∆i(u) = κ ·
(
1[u∗

i ,u
∗
i )(u)

u∗i − u∗i
−

1[u∗
i ,ui)(u)

ui − u∗i

)
for some κ > 0 small enough to ensure ∆i ̸= 0 and xi ±∆i ∈ X . Again, the choice analogous to (41) will do.

By construction, ∫ ui

u∗
i

∆i(u)du = 0,

Hence the perturbation preserves the relevant integral constraints, and Border’s constraint at any grid point in∏n
j=1Dj (0, uj). In particular, we obtain

Bx±ε∆(u) ≤ 1 ∀u ∈
n∏
j=1

Dj (0, uj) (46)

for every ε ∈ (0, 1) such that ε ≤ ε, where

ε =
1− ω

maxui∈[u∗
i ,ui]

∣∣∣∫ ui

ui
∆i(u)du

∣∣∣ > 0.

Similarly to Case 2, since each function xj is piecewise constant on [0, uj ], (46) is equivalent to (36). Thus, by
Lemma 3, both x± ε∆ are feasible, contradicting extremality of x.

Putting all pieces together. To sum up, we have established that ifx is an extremal reduced form, then we cannot
have any sag (s, s) with s > ψ(0). But this means that

G(s) = 1 ∀s ∈ [ψ(0), 1], (47)

which as explained in the proof of Lemma 2 is equivalent to Border’s constraint being identically 1 along the whole
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principal curve.
As explained in Footnote 12, the ψ-transform can be inverted to obtain the underlying CDF in X . It is easy to

see that x = ψ
−1
/u is the CDF corresponding to ψ. Using x, we can unpack (47) for any s ≥ ψ(0) as

1− sn

n
=

∫ 1

ψ
−1

(s)

ιd lnψ(ι)

=

∫ 1

ψ(ψ
−1

)(s)

x(u)du

=

∫ 1

s

x(u)du,

where the first line uses (9) in Theorem 1, the second one is due to Lemma 1, and the third line follows from strict
monotonicity ofψ−1 on [ψ(0), 1]. But this means thatx(u) equalsun−1 aboveψ(0) and is zero below that thresh-
old, which is equivalent to (11) in the theorem.

A.2.3 Proofs of Theorems 2 and 3: Statement II

Proof. Take a feasible reduced formx such that the geometric average of itsψ-transforms denotedψ = (ψ1, ..., ψn)

satisfies (11). By the definition of the ψ-transform and its bijectivity (see Footnote 21), we have uxi(u) = ψ−1
i (u)

for all bidders i.
Fix an index i and let x̃i be the interim winning probability of that bidder induced the score allocation described

in Theorem 3, that is

x̃i(u) =


∏
j ̸=i E

[
1[0,ψ−1

i (u))

(
ψ−1
j (uj)

)]
if u ≥ ψi(0),

0 if u < ψi(0).

We shall show that xi and x̃i coincide. Clearly, both these functions equal 0 on [0, ψi(0)), and so it suffices to
consider their values on the complement of that set.

Let u ≥ ψi(0). Since for each j, by definition, ψ−1
j is zero on [0, ψj(0)) and strictly increasing on its comple-

ment, we have
x̃i(u) =

∏
j ̸=i

ψj

(
ψ−1
i (u)

)
.

Multiply each side by u = ψi

(
ψ−1
i (u)

)
to obtain

ux̃i(u) =

n∏
j=1

ψj

(
ψ−1
i (u)

)
=
[
ψ
(
ψ−1
i (u)

)]n
= max

{[
ψ(0)

]n
, ψ−1

i (u)
}

= uxi(u).

where the second lines follows from the definition of ψ, the third one is due to ψ(ι) = max
{
ψ(0), n

√
ι
}

. Finally,
the last line is due to uxi(u) = ψ−1

i (u) and

ψ−1
i (u) ≥ ψ−1

i (ψi(0)) ≥
[
ψ(0)

]n
.

44



To see the last inequality, note that ψi(ι) = ψi(0) for ι ≤
[
ψ(0)

]n due to monotonicity of (ψ1, ..., ψn).

A.2.4 Proofs of Theorems 2 and 3: Statement III

Proof. This directly follows from the argument in Section 6.2 establish that every score allocation induces an ex-
tremal reduced form.

A.3 Optimality

A.3.1 Proof of Proposition 1

Proof. The proposition follows from combining our results on feasibility and extremality of reduced forms with
the discussion of the δ-transform in Section 7.

First, as explained in Footnote 21, the δ-transforms is a bijection between CDFs on the unit interval and ab-
solutely continuous functions on the nonnegative reals with the slope between 0 and 1. In view of this and the
construction ofRi in the main text,∫ 1

0

n∑
i=1

H(xi(u), u)du =

n∑
i=1

∫ ∞

0

e−tRi(δi(t), t)dt,

where x and δ are in this bijective relationship.
Second, by Theorem 1 and Lemma 2, a reduced form x is feasible if and only if

sn + n

∫ 1

ψ
−1

(s)

ι d lnψ(ι) ≤ 1 ∀s ∈ [ψ(0), 1]. (48)

By continuity of the ψ-transform, ψ is continuous, and hence this condition is equivalent to the following:

[
ψ(s)

]n
+ n

∫ 1

ψ
−1

([
ψ(s)
]n) ι d lnψ(ι) = [ψ(s)]n + n

∫ 1

s

ι d lnψ(ι) ≤ 1 ∀s ∈ [0, 1],

where the equality is due to d lnψ(s) = 0 on intervals of constancy of ψ−1 ([
ψ(s)

]n). Then, changing variables
to s = e−t and using the definition of the δ-transform with

n∑
i=1

δi(t) = −
n∑
i=1

lnψi(e
−t) = − ln

(
n∏
i=1

ψi(e
−t)

)
= −n lnψ(e−t)

we can finally obtain

x is feasible ⇐⇒
∫ t

0

e−τ
n∑
i=1

δ′i(τ)dτ ≤ 1− e−
∑n

i=1 δi(t),

where x and δ are in the bijective relationship.
These two points imply the first part of the proposition, and then the second part follows from (11) that charac-

terizes extremality of reduced forms.

A.3.2 Proof of Proposition 2

Proof. Take two distinct bidders i, j and an inteval (t, t) such that (δ∗i )′, (δ∗j )′ are essentially bounded way from 0

and 1 on that interval.
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Consider a perturbation ∆ : [0,∞) → Rn that is identically zero for all k other i, j, and ∆i is a smooth
function compactly supported in (t, t) so that ∆(t) = ∆(t) = 0, whereas ∆j is the minus of that function. Since
(δ∗i )

′, (δ∗j )
′ are essentially bounded, δ∗ ± ε∆ is feasible in the optimal control problem in Proposition 1 for all

sufficiently small ε > 0. As a result, if δ∗ is a solution, then we necessarily must have

∫ t

t

e−t
(
∂

∂δ
Ri(δ

∗
i (t), t)−

∂

∂δ
Rj(δ

∗
j (t), t)

)
∆i(t)dt = 0.

Remark that the term in the brackets is a continuous function. Since the whole integral is zero for all smooth ∆i

compactly supported in (t, t), we conclude that the term in the brackets is identically zero due to the standard
application of the Fundamental lemma of the calculus of variations.

A.4 Optimal auctions: the case of extremality

A.4.1 Proof of Theorem 4

Proof. The proof proceeds in two steps. First, we show that δ∗ defined in the theorem is indeed a solution to the
optimal control problem in Proposition 1. Second, we establish thisδ corresponds to the auction in which the bidder
with the highest nonnegative PVV defined in (25) gets the good with certainty.

Step 1. Let λ = −(p♯)′ on [0, T ) and λ = 0 above that threshold. By construction, λ is continuously differen-
tiable, strictly positive on [0, T ), and integrable with

∫∞
t
λ(τ)dτ = max{p♯(t), 0}.

For any δ that is feasible in the optimal control problem 1, define

C (δ) =

∫ ∞

0

[
1− e−

∑n
i=1 δi(t) −

∫ t

0

e−τ
n∑
i=1

δ′i(τ)dτ

]
λ(t)dt (49)

and remark that
C (δ) ≥ 0

because the term in the square brackets is nonnegative.
To proceed, we rewrite C (δ) solely in terms of δ rather than its derivatives. First, integrating by parts the second

term in (49) and using δ(0) = 0, we obtain

C (δ) =

∫ ∞

0

[
1− e−

∑n
i=1 δi(t) − e−t

n∑
i=1

δi(t)−
∫ t

0

e−τ
n∑
i=1

δi(τ)dτ

]
λ(t)dt. (50)

Second, changing the order of integration in the third term and using
∫∞
t
λ(τ)dτ = max{p♯(t), 0}, we can further

rewrite (50) as

C (δ) =

∫ ∞

0

[(
1− e−

∑n
i=1 δi(t) − e−t

n∑
i=1

δi(t)

)
λ(t)− e−t

n∑
i=1

δi(t)max{p♯(t), 0}

]
dt. (51)

By construction, the expression (51) is nonnegative for all feasible policies irrespective of their extremality of
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optimality, therefore

∫ ∞

0

e−t
n∑
i=1

Ri(δi(t), t)dt ≤
∫ ∞

0

e−t
n∑
i=1

Ri(δi(t), t)dt+ C (δ) =

∫ ∞

0

λ(t)dt (52)

+

∫ ∞

0

e−t

[
n∑
i=1

Ri(δi(t), t)−

(
et−

∑n
i=1 δi(t) +

n∑
i=1

δi(t)

)
λ(t)−

n∑
i=1

δimax{p♯(t), 0}

]
dt.

It is easy to see that C (δ∗) = 0, therefore the bound in (52) is actually tight for this tentative optimal policy. We
now make it more permissive while keeping its tightness when evaluated at δ∗. Specifically, since the second line
(52) is strictly concave in δ, we can combine the gradient inequality saying that this concave function lies below its
tangent at δ∗ and

(
−et−

∑n
i=1 δ

∗
i (t) + 1

)
λ(t) = 0, which is due to our construction of δ∗ and λ, to obtain

∫ ∞

0

e−t
n∑
i=1

Ri(δi(t), t)dt+ C (δ) ≤
∫ ∞

0

e−t
n∑
i=1

Ri(δ
∗
i (t), t)dt (53)

+

∫ ∞

0

e−t
n∑
i=1

 ∂

∂δ
Ri(δ

∗
i (t), t)−max{p♯(t), 0}︸ ︷︷ ︸

=ωi(t)

 (δi(t)− δ∗i (t))dt.

We claim that the second line in (53) is maximized at δ∗ amongst all feasible policies. To see why, fix an index
i, and remark that the term in the square brackets (denoted ωi for short) is identically zero on [0, T ) due to the
definition of δ∗. Since p♯ is negative on the complement of that set, we have∫ ∞

0

e−tωi(t)δi(t)dt =

∫ ∞

T

e−t
∂

∂δ
Ri(δ

∗
i (t), t)δi(t)dt

=

[∫ ∞

T

e−t
∂

∂δ
Ri(δ

†
i (T ), t)dt

]
δi(T ) +

∫ ∞

T

[∫ ∞

t

e−τ
∂

∂δ
Ri(δ

†
i (T ), τ)dτ

]
δ′i(t)dt

≤
[∫ ∞

T

e−t
∂

∂δ
Ri(δ

†
i (t), t)dt

]
δi(T ) +

∫ ∞

T

[∫ ∞

t

e−τ
∂

∂δ
Ri(δ

†
i (t), τ)dτ

]
δ′i(t)dt = 0,

where the second line follows from to the integration by parts and δ∗i (t) = δ∗i (T ) = δ†i (T ) on [T,∞), whereas the
third line is due to concavity ofRi, the fact that δ†i is decreasing, and both δi(T ) and δ′i(t) are nonnegative. Clearly,
by definition of δ†i , which shows that the upper bound in (53) is maximized at δ∗, thereby establishing optimality
of this policy in the optimal control problem.

Step 2. Having established optimality of δ∗, we now turn to the second part of the theorem. Let x♯ be the
reduced form that corresponds to δ♯, i.e., by (16), we have

ux♯i(u) = e−(δ♯i )
−1(− lnu). (54)

Similarly, letx∗ be the reduced form that corresponds to δ∗—it coincides withx♯ for quantiles above the threshold
of e−δ

♯
i (T ) and equals zero otherwise.

By construction, δ♯ satisfies (19) as equality at all times, meaning that its corresponding reduced form is extremal.
In view of Theorem 3, it can be induced by awarding the good to bidder iwhenever

uix
♯
i(ui) > ujx

♯
j(uj) ∀j ̸= i,

Equivalently, using (54) and applying p♯, which is strictly decreasing, to each side, we can rewrite this condition in
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terms of bidder’s PVVs qi(ui) = p♯
(
(δ♯i )

−1(− lnui)
)

as follows:

qi(ui) > qj(uj) ∀j ̸= i.

By construction, p♯(T ) = 0, meaning that ui is higher than the threshold of e−δ
♯
i (T ) if and only if bidder i’s PVV

is nonnegative. This shows that the optimal reduced form x∗ can be induced by allocating the good to the bidder
with the highest PVV provided that it is nonnegative.

A.4.2 Proof of Proposition 3

Proof. This proposition is a special case of Theorem 4 since all conditions of this theorem are verified. Indeed, as
explained in the main text, in Myerson’s linear model bidders’ revenue functions satisfy

∂

∂δ
Ri(δi, t) = ζi(e

−δi),

where ζi is bidder i’s MVV in the quantile space. Clearly, the environment is regular when bidders’ MVV are strictly
increasing. Furthermore, the added condition on δ† is satisfied vacuously as

∂

∂δ
Ri(δ

†
i (t), t) = 0

yields a constant function: δ†i (t) = δ♯i (T ) defined on [T,∞).

A.4.3 Proof of Proposition 4

Proof. Let δM and δ∗ be Myerson’s solution and the optimum. Clearly, since PVVs are MVVs times the derivative
ofh, the cutoff timeT that appears in Theorem 4 is identical for both cases. As explained in the main text, Myerson’s
solution satisfies

δM1 (t) ≥ δMi (t) ∀i ̸= 1

at all times t.
Suppose towards a contradiction that there exists some time t so that δM1 (t) > δ∗1(t). It is without loss of

generality to assume that t is below the cutoff T , since both δM and δ⋆ are frozen after T . But then there must
exist a bidder i for whom the inequality is reversed at that time, that is δMi (t) < δ∗i (t), because

∑n
i=1 δ

M
i (t) =∑n

i=1 δ
∗
i (t) = t. However, this contradicts (28) and (29) in the main text, and we conclude that δM1 (t) ≤ δ∗1(t)

for all t.
Finally, note that δ∗1 being larger than δM1 implies that bidder’s interim winning probability at the optimum

x∗1 is larger than in Myerson’s auction due to (16). The argument for the weakest bidder is identical and hence
omitted.

A.5 Optimal auctions: going beyond extremality

A.5.1 Proof of Theorem 5

Proof. The proof proceeds is almost identical to the proof of Theorem 4, and we therefore focus on highlighting
on key differences instead of repeating the whole argument.
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Step 1. This steps mimics the first part of the proof of Theorem 4 until (53). Now, under the conditions of
this theorem, ωi is identically zero, which directly implies that δ∗ is a solution to the optimal control problem in
Proposition 1.

Step 2. As in the proof of Theorem 4, the reduced form x♯ corresponding to δ♯ is extremal; furthermore, it
can be implemented by awarding the good to the bidder with the highest PVV. However, the reduced form x∗

corresponding to the optimum δ∗ is no longer a simple truncation of x♯.
By (16), we can express it as

ux∗i (u) =

ux
♯
i(u) = e−(δ♯i )

−1(− lnu) if u ≥ e−δ
♯
i (T ),

ux†i (u) = e−(δ†i )
−1(− lnu) otherwise.

Our assumptions on δ†i implies that the function x∗i a CDF. Furthermore, we have δ†i (t) ≤ δ♯i (t) on [T,∞) due
to

∂

∂δ
Ri(δ

†
i (t), t) = 0 ≥ ∂

∂δ
Ri(δ

♯
i (t), t).

and strict concavity of Ri. As a result, x†i ≤ x♯i on the bottom interval, meaning that the fraction in (31) is well-
defined under given our convention in Footnote 28, i.e., ri(ui) = 0 whenever x♯i(ui) = 0. To sum up, the optimal
reduced formx∗ can be induced by first picking a winner according to PVVs—leading to bidders’ interim winning
probabilities x♯—and then allocating the fraction defined in that equation.

A.5.2 Proof of Proposition 5

Proof. As explained in the text, it is without loss of generality to look at group symmetric policies due to concavity
of bidders’ revenue functions, i.e., δ♯1, δ♯n and δ†1, δ†n corresponding to the risk-neutral and risk-averse bidders and
defined as described in Theorem 5. Concavity ofHi in x and its supermodularity imply that δ†i is weakly increasing;
as a result, δ∗i coincides with δ♯i before T and follows δ†i after that threshold.

We prove the proposition in two steps. First, we shall show that at to = − n
n−1 lnm < T , both δ♯1, δ♯n ⋚

t + lnm if and only if t ⋛ to. Then, we will rank δ♯1, δ♯n (as well as δ∗1 , δ∗n) before to and after that time, and use
this ranking to complete the proof.

Step 1. Note that both δ♯1, δ♯n must be strictly above t+lnm for t sufficiently close to 0 as t+lnm→ lnm < 0

as t→ 0. On the other hand, at least one of must be strictly below t+ lnm for t sufficiently large as

min{δ♯1, δ♯n} ≤ k

n
δ♯1 +

(
1− k

n

)
δ♯n =

t

n
.

By continuity, the minimum of δ♯1, δ♯n crosses the line t+ lnm at some time, say to.
Examination of (32) reveals that at to, we have

p♯(t) = v
(
e−δ

♯
1(t

o)
)
− v′

(
e−δ

♯
1(t

o)
)(

1− e−δ
♯
1(t

o)
)
= v

(
e−δ

♯
n(t

o)
)
− v′

(
e−δ

♯
n(t

o)
)(

1− e−δ
♯
n(t

o)
)
,

which implies that δ♯1(to) = δ♯n(t
o) = to

n = to + lnm due to regularity, (33), and the fact that we have a crossing
at to. Thus, at t = to, all δ♯i are equal to each other and cross the line t + lnm. Clearly, this solves to the unique
crossing time to = − n

n−1 lnm. This crossing time is below T since

p♯(t) = v
(
m

1
n−1

)
− v′

(
m

1
n−1

)(
1−m

1
n−1

)
=

∂

∂x
Hi(m,m

1
n−1 ) > 0
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by assumption.
Step 2. Let t < to. Using marginal revenue-equalization and the unimodality assumption on g, we obtain

∂

∂δ
R(δ♯1(t), t) =

∂

∂δ
Rn(δ

♯
n(t), t) <

∂

∂δ
R1(δ

♯
n(t), t),

which implies δ♯1(t) > δ♯n(t) due to regularity. The symmetric argument applies can be used to show that this
ranking of δ♯1, δ♯n is reversed on (t, T ), and it can also be used to establish that δ†1 < δ†n holds on [T,∞)

Putting all these pieces together, we conclude: δ∗1(t) > δ∗n(t) for t < t0, δ∗1(t) = δ∗n(t) for t = t0 and
δ∗1(t) < δ∗n(t) for t > t0. Finally, using (16), we can obtain x∗1(u) > x∗n(u) for u > e−δ

∗
i (t0) = m

1
n−1 ,

x∗1(u) < x∗n(u) for u < m
1

n−1 and x∗1(u) = x∗n(u)(= m) for u = m
1

n−1 , as claimed.

A.5.3 Example 3

We provide a derivation for the case with 2 risk-neutral bidders and one risk-averse bidder (k = 2). For the case
k = 1 the derivation is analogous and is omitted.

By marginal revenue equalization in (32), we have

2e−δ
♯
1 − 1 = e−δ

♯
3 − (1− e−δ

♯
3)2eδ

♯
3−t (55)

As 2δ♯1 + δ♯3 = t, we have δ♯1 = (t− δ♯3)/2. Plugging this in (55), we obtain

e−δ
♯
3 − (1− e−δ

♯
3)2eδ

♯
3−t = 2e(δ

♯
3−t)/2 − 1. (56)

This is equivalent to a fourth-degree polynomial equation in e−δ
♯
3/2. However, instead of solving for δ♯3, we can

solve directly for x♯3 which is the object we are ultimately interested in. Indeed, e−δ
♯
3(t) = ψ1(e

−t), so e−t =

ψ−1
1 (e−δ

♯
3(t)). But notice that ψ−1

i (u) = uxi(u). Thus, solving (56) for e−t after writing e−δ
♯
3 = u, we will

recover ux♯3(u). Thus, x∗3(u) is the solution to

u− (1− u)2ux♯3/u = 2

√
ux♯3/

√
u− 1 ⇔ 2x♯3(1− u) + 2

√
x♯3 − u− 1 = 0, (57)

so

x♯3(u) =
2− u2 −

√
3− 2u2

2(1− u)2
. (58)

By Theorem 5, the expression in (58) will be optimal only when δ∗3(t) = δ♯3(t), that is, t ≤ T . To find T , we equate
both sides of (56) to 0 which yields δ♯1(T ) = ln 2, δ♯3(T )−T = −2 ln 2, so e−δ

♯
3(T )− (1− e−δ

♯
3(T ))2(1/4) = 0,

δ♯3(T ) = ln 3. Thus, T = 2δ♯1(T ) + δ♯3(T ) = ln 12. The expression in (58) is valid for u ≥ e−δ
♯
3(T ) = 1/3.

To find x♯1(u), we can do the same by writing (55) in terms of δ1 only. We get

2e−δ
♯
1 − 1 = e2δ

♯
1−t − (1− e2δ

♯
1−t)2e−2δ♯1 .

Writing e−δ
♯
1 = u and solving for e−t = ux♯1, we get

x♯1(u) = max

{
2u+ 2u2 − 1

2u+ 1/u
, 0

}
.

This is optimal for u ≥ e−δ
♯
1(T ) = 1/2.
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For loweru, the optimal allocations are governed by δ†i (t)which can be found from ∂
∂δRi(δ

†
i (t), t) = 0, which

boils down to just ∂
∂xHi(x

†
i (u), u) = 0. Thus, for u < 1/3 u− (1− u)2x†3(u) = 0, so x†3 = u

2(1−u) . Thus, by
Theorem 5,

x∗3(u) =

 u
2(1−u) , u < 1/3;

2−u2−
√
3−2u2

2(1−u)2 , u ≥ 1/3.

x∗3(u) is continuous. (To apply Theorem 5, we have to check that the derivative of δ†3(t) is (weakly) between zero
and one, but here we do not have to solve for δ†3(t) explicitly to do that. Indeed, as the resulting x†3(u) =

u
2(1−u) is

increasing, we know by the general properties of delta transforms that its delta transform satisfies δ′3(t) ∈ [0, 1].)
Likewise, for u < 1/2, we find δ†1(t) = ln 2 for t ≥ T , which clearly has a derivative between 0 and

1. Recall that constant delta transforms are generated by jumps in the allocation x. In fact, by (16), x†i (u) =

exp
(
−(δ†i )

−1(− lnu)
)
/u we get that for u < 1/2, (δ†1)−1(− lnu) = +∞, as − lnu > ln 2 = δ†1(t) for

all t. Thus, x†1(u) = exp(−∞)/u = 0 for u < 1/2.
Summing up, the optimal allocation to a risk-neutral bidder is

x∗1(u) = x∗2(u) =

0, u < 1/2;

2u+2u2−1
2u+1/u , u ≥ 1/2.

At u = 1/2, the interim allocation experiences a jump from 0 to 1/6.

A.6 Geometry of the δ-transform

The δ-transform yields an explicit geometric decomposition of a CDF x ∈ X into: (a) vertical segments (jumps),
corresponding to δ′ = 0; (b) horizontal segments with no mass, corresponding to δ′ = 1; (c) strictly increasing
continuous segments, corresponding to δ′ ∈ (0, 1). For example, Figure 1 plots the ψ-transform corresponding to

x(u) = u · 1[1/4,1/2)∪ [3/4,1)(u) + 1/2 · 1[1/2,3/4)(u),

which (a) jumps at u = 1/4 and u = 3/4, (b) is horizontal on [0, 1/4) and [1/2, 3/4), and (c) coincides with the
diagonal on the remaining intervals. The resulting δ-transform satisfies

δ′(t) =


0, t ∈

[
2 ln(4/3), ln(8/3)

)
∪
[
2 ln 4, ∞

)
,

1, t ∈
[
ln(8/3), 2 ln 2

)
,

1/2, t ∈
[
0, 2 ln(4/3)

)
∪
[
2 ln 2, 2 ln 4

)
,

and is illustrated in Figure 3 below. Because the δ-transform proceeds from u = 1 downward, the first flat interval
of x appears as the last interval where δ′ = 0, and similarly for the other pieces of the decomposition.

A.7 Regularity

In this section, we unpack regularity in terms of curvature properties ofHi.
Condition (A). We measure how ∂Hi

∂x responds to changes in its arguments through the following pair of semi-
elasticities:

ξxi =
∂

∂ lnx

∂Hi

∂x
, ξui =

∂

∂ lnu

∂Hi

∂x
.
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t

u′ = 3/4
x(3/4) = 3/4

u′′ = 1/2
x(1/2) = 1/2

t′ = 2 ln(4/3) t′′ = 2 ln 2

Figure 3: Reading of the CDF x(u) in Figure 1 foru = u′, u′′ from the parametric curves e−δ(t) and et−δ(t) shown
in red (solid) and blue (dotted).

By definition of bidders’ revenue functionsRi in (18), we have ∂
∂δRi(δ, t) =

∂
∂xHi(e

δ−t, e−δ), hence

∂2

∂δ2
Ri(δ, t) = ξxi (e

δ−t, e−δ)− ξui (e
δ−t, e−δ),

∂2

∂δ∂t
Ri(δ, t) = −ξxi (eδ−t, e−δ). (59)

In view of these identities, bidder i’s revenue function Ri is strictly concave if the x-semi-elasticity is strictly
smaller than the u-semi-elasticity. This holds vacuously when Hi is strictly supermodular and concave, since then
ξxi ≤ 0 < ξui . More generally, Condition (A) requires that supermodularity is sufficiently strong relative to con-
vexity.

Condition (B). We now assume Condition (A) and examine the added restrictions imposed by Condition (B).
Under strict concavity ofRi, one can uniquely solve (23) for functions (δ♯, p♯). Then, regularity requires δ♯ to be
strictly increasing and p♯ to be strictly decreasing. To see when it is the case, differentiate (23) using the Implicit
function theorem to obtain

∂2R♯i
∂δ2

· (δ♯i )
′ +

∂2R♯i
∂δ∂t

= (p♯)′(t),

n∑
i=1

(δ♯i )
′ = 1, (60)

where R♯i stays for Ri evaluated at δ♯i (t) for each time t. Let ξx,♯j and ξu,♯j be the semi-elasticities evaluated along
the marginal revenue equalizing path, and set

κ♯ =

n∑
j=1

1

ξx,♯j − ξu,♯j
.

Using (59), the above linear system solves to

κ♯ · (ξx,♯i − ξ
u,♯)
i︸ ︷︷ ︸

>0

· (δ♯i )
′ = 1−

n∑
j=1

ξx,♯j − ξx,♯i

ξx,♯j − ξu,♯j
, κ♯︸︷︷︸

<0

· (p♯)′ = 1−
n∑
j=1

ξx,♯j

ξx,♯j − ξu,♯j
, (61)

meaning that the strict positivity of right-hand sides in (61) is necessary and sufficient for Condition (B) provided
that Condition (A) is satisfied.
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To sum up, the added Condition (B) is verified if and only if

1 >

n∑
j=1

ξx,♯j −max{0, ξx,♯1 , ..., ξx,♯n }
ξx,♯j − ξu,♯j

(62)

along the path equalizing bidders’ marginal revenues. This trivially holds in Myerson’s linear model as x-semi-
elasticity is identically zero. More generally, (62) demands that the semi-elasticities cannot be too strong and differ
across various bidders too much along δ♯.

As we pointed out earlier, Condition (A) is satisfied vacuously when Hi strictly supermodular and concave in
its first argument. Then, since the x-semi-elasticity is negative, (62) simplifies to

1 >

n∑
j=1

ξx,♯j

ξx,♯j − ξu,♯j
.

If, in addition, the environment is symmetric, then the marginal revenue equalizing path is necessarily symmetric,
i.e., δ♯i = t/n, which gives x♯i = un−1. We can further rewrite it as

1 > n
ξx(un−1, u)

ξx(un−1, u)− ξu(un−1, u)
,

which nests the regularity condition in Theorem 1 of Gershkov et al. [2022] for the symmetric CRA specification:
H(x, u) = v(u)x− (1− u)v′(u)g(x).
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