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Abstract

Dynamic contracts typically allow the principal to relax future incentive constraints by

backloading the agent’s information rents or asking the agent to post a bond upfront which

is liquidated over time. An implicit modeling assumption at play there is that both the

principal and agent have equal access to capital, captured by equal discount rates. This

paper introduces unequal discounting in a canonical dynamic screening problem where

the agent has Markovian private information and limited commitment. The backloading

force is tempered by an inter-temporal cost of incentive provision. The optimal contract

features cycles with infinite memory. The interaction of Marokvian information and

unequal discounting introduces technical challenges by rendering the standard relaxed

problem approach invalid for certain parameters. An approximately optimal and simple

alternative is provided, where both terms are made formalized.

1 Introduction

Discounting is central to the modeling of dynamic interactions. Other than the direct psy-

chological motivation that humans beings value the present more than the future, the most

obvious interpretation of discounting factor is given by interest rates. This is captured by

the proverbial identity 𝛿 = 𝑒−𝑟 ≈ 1
1+𝑟 , where 𝛿 is the agent’s discount factor and 𝑟 the interest

rate in the market.

Unequal discounting then typically attempts to capture one of three forces. In principal-

agent settings it allows one party to have better access to capital markets than the other

through lower interest rates (eg. Krueger and Uhlig [2006] and Biais, Mariotti, Plantin, and

Rochet [2007]). In planning problems, it allows the planner to have longer or shorter time

horizon than citizens (eg. Farhi and Werning [2007] and Acemoglu, Golosov, and Tsyvinski
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sity, rlamba@psu.edu; Mettral: Allianz Life Insurance, t.mettral@gmx.de. We are indebted to Leeat Yariv
for a conversation that instigated this paper, Vitor Farinha Luz for fruitful initial discussions, Daniel Barron
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1



[2008]). In pure strategic settings such as bargaining and reputation, it seeks to emulate a

power (im)balance between players (eg. Rubinstein [1982] and Fudenberg and Levine [1989]).

The goal of this paper is to invoke the first interpretation and under it guise understand how

unequal discounting impacts the standard predictions in dynamic mechanism design.

To that end, we focus on a canonical dynamic screening model inspired by Battaglini

[2005]. A principal (here a ”large” firm) supplies capital that is critical for the production of

a final good by an agent (here a ”small” firm). A production technology shock is privately

observed by the agent, and its follows a two-state Markov process. The principal posts

a dynamic menu of capital allocations in return for periodic payments. We solve for the

profit maximizing contract of the principal subject to incentive compatibility and individual

rationality constraints for the agent, where the former captures agency frictions and the

latter limited commitment on part of the agent. In a departure from the canonical model,

the principal is more patient than the agent.

Four main results are presented. First, as is standard in contract theory, we solve the

relaxed problem, and show that the solution delivers what we call a restart contract.1 The

high productivity type is always provided the efficient (or surplus maximizing) allocation, and

the low productivity type is delivered a downward distortion, that is an allocation less than

than the efficient one.2 These distortions feature cycles: they are a function of the number

of low shocks since the last high shock. The contract starts with some initial distortion for

the low type that monotonically converges to a positive level for successive low shocks, i.e. it

does not disappear. Once a high shock arrives, it erases the memory of past distortions, and

then every successive low type restarts the cycles of previous distortions, and so on. This is in

contrast to dynamic mechanism design models with equal discounting that predict eventually

vanishing distortions.3 We provide a brief intuition for this result.

A salient trade-off in much of contract theory is rent-versus-efficiency.4 How much effi-

ciency to give up in order to reduce the information rent of the agent. Typically, dynamic

contracting allows the principal to gradually resolve the tradeoff in favor of the efficiency by

backloading the agent’s payoffs— this reduces shadow price of providing information rent in

1Relaxed problem refers to the maximization of the objective (principal’s profit) subject to a subset of
constraints which are the only ones that bind at the optimum in the static version of the problem.

2Throughout, the word ”distortion” means the wedge between the optimal allocation and the efficient
allocation.

3For example, in Battaglini [2005], the contract becomes efficient the moment a high shock arrives and
converges to the efficient allocation along the constant low shock history. Further, discussing Garrett, Pavan,
and Toikka [2018], Bergemann and Välimäki [2019] write: ”They show that regardless of whether the first-order
approach is applicable or not, the optimal contract must have vanishing distortions as long as the underlying
process on types is sufficiently mixing, in the sense that the impact of initial information on future types
vanishes. Hence this paper confirms, for a larger class of models, one of the key findings in Battaglini [2005]
derived for models with binary types.”

4Laffont and Martimort [2002] write: ”[T]he information gap between the principal and the agent has
some fundamental implications for the design of the bilateral contract they sign... At the optimal second-best
contract, the principal trades-off his desire to reach allocative efficiency against the costly information rent
given up to the agent to induce information revelation.”
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the long-run.5 Unequal discounting limits the extent to which the principal can exploit this

instrument by introducing a competing frontloading force.

Suppose interest rates faced by the two parties are 𝑟𝑃 and 𝑟𝐴 respectively. If the principal

promises to pay the agent an expected information rent of 𝑥 tomorrow, limited commitment

implies she can extract a maximum of 𝑥
1+𝑟𝐴 today. This generates an account of 𝑥

1+𝑟𝐴 −
𝑥

1+𝑟𝑃 = −
(

1
1+𝑟𝑃 − 1

1+𝑟𝐴

)
𝑥 for the principal, which is negative when 𝑟𝑃 < 𝑟𝐴. We call this the

intertermporal cost of incentive provision. For any positive value of 𝑥, the intertemporal

cost creates a new wedge wherein the principal always wants to backload more than what is

feasible. So the shadow price for backloading is perennially positive owing to the frontloading

push caused by unequal discounting.

These countervailing forces settle on to a compromise culminating in the restart contract.

The standard backolading force generates decreasing distortions for consecutive low shocks,

which are erased on the arrival of a high shock. However, the interremporal cost of incentive

provision never allows the shadow price of providing incentives to ever disappear. So, another

low shock after a high one restarts the cycles of distortions.

Now, a vital feature of the model here is role of persistence in the agent’s technology. If

the production technology is iid over time, the model is relatively uninteresting: the high type

gets the efficient allocation as before and the low type gets a static downward distortion that

is independent of history. Distortions are still cyclical, but trivially so, with no memory. The

interaction of Markovian types with unequal discounting, however, creates richer predictions:

a sequence of decreasing distortions with infinite memory, which are cyclical around the

arrival of a high shock.6

The second result pins down the validity of the relaxed problem (or first-order approach)

approach in terms of the primitives of the model. The relaxed problem does achieve the

full optimum for a large constellation of parameters. Unlike the standard model with equal

discounting, however, it can fail even when the agent’s type follows a two-state Markov

process. The rough intuition for this is as follows: Consider a two period version of our

model. In the standard model, distortions for the low type disappear once a high shock is

realized, so efficient allocation is delivered for history 𝐻𝐿, whereas distortions persist for the

low shock history, 𝐿 and 𝐿𝐿. With unequal discounting new distortions are introduced for

𝐻𝐿, and these can be high enough so that the capital allocation for this history is lower than

𝐿𝐿 even though the former is better in terms of productivity shocks. This non-monotonicity

can violate the incentive constraints ignored in the relaxed problem, and the force is stronger

5We use the standard economics terminology in referring to the Lagrange multiplier of a constraint in an
optimization problem as the associated shadow price (Dixit [1990]).

6If the model has iid shocks and equal discounting, then it delivers zero distortions from the second
period onwards. This is in some sense the reason why much of the dynamic financial contracting literature,
which features iid technologies (eg. Clementi and Hopenhayn [2006]) focusses on stronger forms of limited
commitment on the agent’s side. These take the form of limited liability constraints as opposed to forward
looking individual rationality, since the latter do not generate any interesting tension in the the models. More
on financial contracting later.
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for the infinite horizon model. The optimum in such a case demands an upwardly distorted

allocation for the high type, larger than its efficient counterpart.

In the third contribution of the paper, we ask: What can the principal do if she faces

parameters for which the relaxed problem approach may not be valid? The first answer is

of course to brute-force her way through (like the modeler here) and solve for the optimal

contract. We provide this solution in the recursive format. While the solution is completely

specified, it is quite complicated as the support of the contract set grows exponentially with

time.

Complimentarily, we propose a ”simpler” alternative that finds the optimum in the re-

stricted class of restart contracts, it is termed the optimal restart contract. We then construct

a theoretical bound that satisfies the following two properties: (i) there is no gap between

the optimal restart contract and the global optimum when the relaxed problem approach is

valid, and (ii) the general loss from focussing on restart contracts is small even when the

relaxed problem approach fails.

The purpose of restricting attention to restart contracts is fourfold. First, there is an

inherent normative appeal to the idea of restartness in the form of ”let bygones be bygones”.

The contract is history dependent, but allows for the erasure of history upon realization of

good outcomes, only for distortions to be reinstated on the arrival of new bad outcomes.

Of course, in our model the erasure happens rather starkly, upon the realization of one

high shock. Second, the idea of restart contracts generated through unequal discounting

connects to a sizeable literature in economics, particularly public finance, political economy

and sovereign debt.7 Third, restart contracts arise naturally as the solution to the relaxed

problem, which is quite the standard in contract theory. Optimal restart contracts aim to keep

that basic structure in tact while ensuring approximate global optimality. And, finally, when

the relaxed problem approach fails, even though the optimal contract gets quite complicated,

the optimal restart contract continues to be simple in a precise sense that forms the next

result fo the paper.

The fourth result formalizes this notion of simplicity for dynamic contracts. Here we take

a cue from Abreu and Rubinstein [1988] and frame simplicity in the language of automaton.

However, unlike their approach, we do not restrict the contract to be a finite automaton,

rather we allow the space of contracts to grow linearly with time. This is done both for

tractability and to allow the contract to at least depend on time (as opposed to the entire

history). Then, through the recursive approach to contract design, we show that restart

7Farhi and Werning [2007] find that in an Atkeson and Lucas [1992] style risk sharing model with taste
shocks, when the social discount factor is higher than the private one, consumption exhibits mean reversion
with no immiseration. Acemoglu, Golosov, and Tsyvinski [2008] show that when politicians are less patient
than the citizens, positive aggregate labor and capital taxes are charged forever to correct for political economy
distortions. Aguiar, Amador, and Gopinath [2009] show that in a model of sovereign debt and foreign capital,
if the government cannot commit and is more impatient than the market, then long-run cycles emerge in
sovereign debt and foreign capital investments. In recent work, Kapon [2021] studies a model of dynamically
arriving agents who are screened for crimes they have committed using amnesty programs that feature the
restart property; here stochastic arrivals as opposed to unequal discounting creates cycles.
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contracts are simple and the optimal contract is simple if and only if it is restart. To the best

of our knowledge, this is the first formalization of simplicity in dynamic contracts or dynamic

mechanism design.

A few observations on the modeling approach and its interpretations are in order. A

sizeable literature on dynamic mechanism design seeks to explore the implications of pri-

vate and evolving information on the design of contracts, with applications such as dynamic

pricing, managerial compensation and optimal taxation in mind, along with more abstract

considerations of how to mitigate the problem of agency in the design of institutions when

the principal has some commitment power (see Bergemann and Välimäki [2019] for a recent

survey). Interestingly, and to the best of our knowledge, none of the papers thus far consider

the question of how the qualitative predictions therein would change if the principal is more

patient than the agent(s).

Further still, unequal discounting can be thought of as a financial constraint. In the

standard model, as in Battaglini [2005], it is costless to move transfers across time. Two

modeling ingredients generate this: First limited commitment for the agent captured by the

individual rationality constraint imposes a lower bound on current utility plus continuation

value. Second, the principal and agent have the same discount factor. A consequence of

these assumptions is that transfers are not uniquely pinned down— individual rationality

binds only in the first period and is slack forever after. Imposing either a stronger notion of

limited commitment or unequal discounting introduces a friction in the model that breaks

this irrelevance in timing of payments, while still allowing for some tractability afforded by

the quasi-linear framework.

In recent work (Krasikov and Lamba [2021]) we have explored the former route by re-

quiring a stronger form of limited commitment— the stage payoff or current utility of the

agent must be non-negative every period.8 These are hard financial constraints since the

agent simply cannot borrow beyond his daily working capital. In addition, persistence in

technology shocks makes financial constraints bind for a long time. But eventually, through

maximal backloading of incentives, distortions disappear and efficiency is achieved.

In this paper, we take the latter route by requiring the movement of payments across time

to be evaluated at different rates for the principal and agent. This too puts restriction on the

principal’s ability to backload incentives to the extent desirable in the standard model. The

financial constraint here is soft since the weaker form of individual rationality allows the agent

to borrow beyond what is required for current working capital. However, this borrowing is

at a rate worse than the market rate or the rate available to the principal. An inter-temporal

cost of incentive provision is then created. It disappears, as in the standard model, when

a high shock is realized, but unlike the standard model, the financial constraints imposed

by unequal discounting never allows it go away, a low shocks starts the cycle of distortions

8See also Clementi and Hopenhayn [2006], Krishna, Lopomo, and Taylor [2013] and Krähmer and Strausz
[2015] for related models.
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again.9

Finally, the impact of unequal discounting has been studied in other related works. In

repeated games, the set of equilibrium payoffs expands favoring the patient player (see Lehrer

and Pauzner [1999]). Opp and Zhu [2015] analyze the general relational contracting model

of Ray [2002] with unequal discounting and show that all Pareto efficient contracts follow a

cyclical pattern similar to our paper. The main frictions there are however different— there

is no private information or moral hazard, rather two-sided limited commitment. Further, as

discussed above, the literatures on public finance, political economy and sovereign debt have

used unequal discounting to generate allocations that parallel restart contracts either in their

cyclicality or persistence of long-run distortion.10

2 Model

2.1 Primitives

A firm (agent) with access to a production technology approaches a supplier (principal) of

a key input (say capital); the former is a small player while the latter is a big player in

the market.11 The productivity of the firm is its private information. They agree to sign a

(dynamic) contract whereby endogenous levels of input are supplied by the principal every

period, in return for monetary payments by the agent.

Formally, the agent’s stage (or per-period) preferences are given by 𝜃𝑅(𝑘) − 𝑝 where

𝑘 is the input supplied by the principal, 𝑝 is the payment made by the agent, 𝜃 is the

productivity shock, and 𝑅 is a concave production function that satisfies Inada conditions.12

The principal’s stage utility is simply 𝑝 − 𝑘.13 The static surplus is denoted by 𝑠(𝜃, 𝑘) :=

𝜃𝑅(𝑘) − 𝑘. We consider an infinite horizon setting where the principal and agent discount

future utility. However, we do not restrict them to have the same discount factor ; these are

denoted by 𝛿𝑃 and 𝛿𝐴, respectively, where 𝛿𝑃 ⩾ 𝛿𝐴.
14

9In taking financial constraints seriously and breaking the inter-temporal linearity of transfers, while main-
taining quasi-linear structure on preferences, both Krasikov and Lamba [2021]) and this paper seek to bring
ideas from dynamic financial contracting (see Sannikov [2013] for a survey) to dynamic mechanism design.

10Note that there is also a separate literature on hyperbolic discounting, starting with Laibson [1997], that
has also been used in the study of contracts (eg. (Gottlieb and Zhang [2021]), political economy (eg. Bisin,
Lizzeri, and Yariv [2015]), and more.

11Throughout the agent will be referred to as a he and the principal as a she.
12Technically: (i) 𝑅′(𝑘) > 0, 𝑅′′(𝑘) < 0 for all 𝑘 ⩾ 0, (ii) 𝑅(0) = 0 and (iii) lim

𝑘→0
𝑅′(𝑘) = ∞, lim

𝑘→∞
𝑅′(𝑘) = 0.

13Note that other dynamic screening models can mapped into our framework and all the results in the paper
can be analogously stated. For example, we can also consider the regulation model à la Laffont and Tirole
[1993] where the principal and agent have preferences 𝑉 (𝑘) − 𝑝 and 𝑝 − 𝜃𝑘 respectively, or the monopolistic
screening model à la Mussa and Rosen [1978] where the principal and agent have preferences 𝑝 − 𝑘2/2 and
𝜃𝑘 − 𝑝, respectively.

14As mentioned in the introduction, the concept of discounting is closely connected to the idea of interest
rates. For example, we can write 𝛿𝑃 = 𝑒−𝑟 and 𝛿𝐴 = 𝑒−𝑠 where 𝑟 and 𝑠 are respectively the interest rates
faced by the principal and agent in the market with 𝑠 ≥ 𝑟, and the exponential representation approximates
a continuously compounded rate. Abreu [1988], in his classic work, motivates the study of dynamic games
under discounting as follows: ”Indeed, in most economic applications, the assumption of a zero interest rate
is inappropriate; we are typically concerned with situations in which the future is less important than the
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Productivity shocks can take values in Θ := {𝜃𝐻 , 𝜃𝐿}, where 𝜃𝐿 > 0 and 𝜃𝐻 − 𝜃𝐿 = Δ𝜃 > 0.

This will be referred as the agent’s type. The types follow a Markov chain, P(𝜃𝐻 |𝜃 𝑗) =

𝛼 𝑗 , which satisfies first-order stochastic dominance and full support: 1 > 𝛼𝐻 ⩾ 𝛼𝐿 > 0.

To simplify calculations, we assume that the prior distribution coincides with the invariant

distribution of Markov process, that is P(𝜃𝐻) =
𝛼𝐿

1−𝛼𝐻+𝛼𝐿
and P(𝜃𝐿) =

1−𝛼𝐻

1−𝛼𝐻+𝛼𝐿
. All of

this information about preferences and stochastic evolution of types is common knowledge,

however, the exact type realization is privately observed by the agent, and therein lies the

asymmetric information or agency friction.

The principal can commit to a long-term contract. Then, invoking the revelation principle,

it is without loss of generality to focus on direct mechanisms. A direct mechanism is denoted

by ⟨k, p⟩ := {(𝑘𝑡 , 𝑝𝑡 )}∞𝑡=1 where (𝑘𝑡 , 𝑝𝑡 ) is a function of reports up to time 𝑡: 𝜃t := (𝜃1, . . . , 𝜃𝑡 ).
Denote a history with 𝑡 consecutive reports of type 𝜃 𝑗 by 𝜃

t
j
.15 The principal’s objective is

to maximize her profit subject to incentive compatibility and participation constraints for

the agent. For a fixed mechanism, the agent faces a dynamic decision problem in which

her strategy is simply a function that maps his private history into an announcement every

period.16

2.2 Constraints

Define the stage and expected utility of the agent (under truthful reporting) at any history

of the contract tree to be

𝑢𝑡 (𝜃t) := 𝜃𝑡𝑅(𝑘𝑡 (𝜃t)) − 𝑝𝑡 (𝜃t), 𝑈𝑡 (𝜃t) := 𝑢𝑡 (𝜃t) + 𝛿𝐴E
[
𝑈𝑡+1(𝜃t+1) |𝜃t

]
.

It is straightforward to note that a contract can then be expressed as ⟨k, u⟩ or ⟨k,U⟩. We

shall use the three formulations interchangeably.

A contract is said to be incentive compatible if truthful reporting by the agent is always

profitable for him. Using the one-shot deviation principle, incentive compatibility can be

formally expressed as:17

𝑈𝑡 (𝜃t) ⩾ 𝜃𝑡𝑅(𝑘𝑡 (𝜃t−1, 𝜃𝑡 )) − 𝑝𝑡 (𝜃t−1, 𝜃𝑡 ) + 𝛿𝐴E
[
𝑈𝑡+1(𝜃t−1, 𝜃𝑡 , 𝜃𝑡+1) |𝜃t

]
.

present.” So under this interpretation, different discount factors automatically refer to access to different
interest rates.

15At the cost of minimal confusion, the subscript will be used interchangeably for time and type. Also, as
is standard, a contract is restricted to lie in 𝑙∞.

16The private history of the agent includes the previous reported types 𝜃t−1 as well as actual types 𝜃t :=
(𝜃1, . . . , 𝜃𝑡 ).

17The Markovian (full support) assumption on stochastic evolution of types ensures that the agent wants
to report truthfully even if he has lied in the past; incentives are preserved both on and off-path.
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Equivalently, incentive compatibility can be expressed directly in terms of ⟨k,U⟩:

𝑈𝑡 (𝜃t−1, 𝜃𝑡 ) −𝑈𝑡 (𝜃t−1, 𝜃𝑡 ) ⩾ (𝜃𝑡 − 𝜃𝑡 )𝑅(𝑘𝑡 (𝜃t−1, 𝜃𝑡 ))+

+ 𝛿𝐴
(
P(𝜃𝐻 |𝜃𝑡 ) − P(𝜃𝐻 |𝜃𝑡 )

) (
𝑈𝑡+1(𝜃t−1, 𝜃𝑡 , 𝜃𝐻) −𝑈𝑡+1(𝜃t−1, 𝜃𝑡 , 𝜃𝐿)

)
.

where 𝜃𝑡 − 𝜃𝑡 is the measure of static information rents and P(𝜃𝐻 |𝜃𝑡 ) −P(𝜃𝐻 |𝜃𝑡 ) is its dynamic

counterpart; the latter records the fact that with Markovian shocks, knowing his type today

also gives some information to the agent about his types in the future. It is useful to partition

the set of incentive compatibility constraints into “downward” (𝐼𝐶𝐻) corresponding to 𝜃𝑡 = 𝜃𝐻

and 𝜃𝑡 = 𝜃𝐿, and “upward” (𝐼𝐶𝐿) corresponding to 𝜃𝑡 = 𝜃𝐿 and 𝜃𝑡 = 𝜃𝐻 .

A contract is said to be individually rational if it offers each type of the agent a non-

negative expected utility after every history, that is 𝑈𝑡 (𝜃t) ⩾ 0. Individual rationality ensures

that the agent is provided with a minimum expected utility at each stage, its normalization

to zero is done for simplicity. This corresponds to a limited commitment assumption for

the agent— he cannot be forced into the contractual relationship at any point. The set

of participation constraints are analogously partitioned into 𝐼𝑅𝐻 for 𝜃𝑡 = 𝜃𝐻 and 𝐼𝑅𝐿 for

𝜃𝑡 = 𝜃𝐿.

2.3 Optimization problem

The principal’s objective is to maximize her profits subject to incentive and individual ratio-

nality constraints for the agent. This problem is now formally stated.

The static surplus (under truthful revelation) is denoted by 𝑠(𝜃, 𝑘) := 𝜃𝑅(𝑘) − 𝑘. Thus,

the (ex ante) expected surplus generated by a given contract is 𝑆 :=
∞∑
𝑡=1
𝛿𝑡−1
𝑃
E

[
𝑠
(
𝜃𝑡 , 𝑘𝑡 (𝜃t)

) ]
.

Moreover, define

𝑈𝑃 :=
∞∑︁
𝑡=1

𝛿𝑡−1𝑃 E
[
𝑢𝑡 (𝜃t)

]
, 𝑈𝐴 :=

∞∑︁
𝑡=1

𝛿𝑡−1𝐴 E
[
𝑢𝑡 (𝜃t)

]
to be the expected net present value of the agent’s utility using the principal and agent’s

discount factors, respectively. For 𝛿𝑃 = 𝛿𝐴, we have 𝑈𝑃 = 𝑈𝐴. However, in our framework,

the principal and agent evaluate the agent’s utility stream differently.

To express 𝑈𝑃 only in terms of U, parse it out into two components: 𝑈𝑃 = 𝑈𝐴 + 𝐼, where

𝑈𝐴 = 𝑈1(𝜃𝐻)P(𝜃𝐻)+𝑈1(𝜃𝐿)P(𝜃𝐿), 𝐼 :=
∞∑︁
𝑡=1

(𝛿𝑡−1𝑃 −𝛿𝑡−1𝐴 )E
[
𝑢𝑡 (𝜃t)

]
= (𝛿𝑃−𝛿𝐴)

∞∑︁
𝑡=2

𝛿𝑡−2𝑃 E
[
𝑈𝑡 (𝜃t)

]
.

𝑈𝐴 is the standard information rent and 𝐼 is the intertemporal cost of incentive provision.

Then, the principal’s problem, say (★), can be stated as:

(★) Π★ := max
⟨k,U⟩

𝑆 −𝑈𝐴 − 𝐼 subject to k ≥ 0 and 𝐼𝐶𝐻 , 𝐼𝑅𝐻 , 𝐼𝐶𝐿 , 𝐼𝑅𝐿 .

We will refer to the solution to problem (★) by ⟨k★,U★⟩ (or alternatively ⟨k★, u★⟩ or ⟨k★, p★⟩).
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3 Building blocks

First, we introduce the idea of virtual value. Then, to fix ideas, we look at the solutions to

the one and two period versions of the problem.

3.1 Virtual value

The main building block of the solution is the notion of Myersonian virtual value (Myerson

[1981]). Recollect that the static surplus is given by 𝑠(𝜃, 𝑘) = 𝜃𝑅(𝑘) − 𝑘. In our quasi-linear

environment, define

K𝐻 (𝜌) := 𝑎𝑟𝑔max
𝑘⩾0

𝑠(𝜃𝐻 + 𝜌Δ𝜃, 𝑘), K𝐿 (𝜌) := 𝑎𝑟𝑔max
𝑘⩾0

𝑠(𝜃𝐿 − 𝜌Δ𝜃, 𝑘).

Then, 𝜃𝐻 + 𝜌Δ𝜃 is the virtual value associated with the high type and 𝜃𝐿 − 𝜌Δ𝜃 - with the low

type. Here 𝜌 ≥ 0 measures the level of distortion arising out of information asymmetry, and

it is pinned down by the set of binding constraints at the optimum. Concavity of 𝑅 implies

that K𝐻 is an increasing and K𝐿 a decreasing function of 𝜌:

K𝐻 (𝜌) = (𝑅′)−1
(

1

𝜃𝐻 + 𝜌Δ𝜃

)
and K𝐿 (𝜌) = (𝑅′)−1

(
1

𝜃𝐿 − 𝜌Δ𝜃

)
for 𝜌Δ𝜃 < 𝜃𝐿 , zero otherwise.

The efficient allocations are given by 𝑘𝑒
𝐻
:= K𝐻 (0) and 𝑘𝑒

𝐿
:= K𝐿 (0), i.e.,

𝜃 𝑗𝑅
′(𝑘𝑒𝑗 ) = 1 for 𝑗 = 𝐻, 𝐿.

3.2 Static problem

To describe the basic rent-versus-efficiency tradeoff, we start with the static problem. Here

discounting is irrelevant. The principal solves:

max
⟨k,u⟩

∑︁
𝑗=𝐻,𝐿

(𝑠(𝜃 𝑗 , 𝑘 (𝜃 𝑗)) − 𝑢(𝜃 𝑗))P(𝜃 𝑗) subject to k ⩾ 0 and 𝐼𝐶𝐻 , 𝐼𝑅𝐻 , 𝐼𝐶𝐿 , 𝐼𝑅𝐿 ,

where we dropped time subscripts, i.e., 𝑘 stands for 𝑘1, etc. It is well known that we can

look at a relaxed problem where we maximize the objective subject only to 𝐼𝐶𝐻 : 𝑢(𝜃𝐻) ⩾
Δ𝜃𝑅(𝑘 (𝜃𝐿)) + 𝑢(𝜃𝐿) and 𝐼𝑅𝐿 : 𝑢(𝜃𝐿) ⩾ 0. Both these constraints hold as equalities, the

objective can be re-written as∑︁
𝑗=𝐻,𝐿

𝑠(𝜃 𝑗 , 𝑘 (𝜃 𝑗))P(𝜃 𝑗)−Δ𝜃𝑅(𝑘 (𝜃𝐿))P(𝜃𝐻) = 𝑠(𝜃𝐻 , 𝑘 (𝜃𝐻))P(𝜃𝐻)+𝑠
(
𝜃𝐿 − Δ𝜃

P(𝜃𝐻)
P(𝜃𝐿)

, 𝑘 (𝜃𝐿)
)
P(𝜃𝐿).

Using the notation of virtual valuation above, the optimal allocation rule is then given by

𝑘★(𝜃𝐻) = 𝑘𝑒𝐻 = K𝐻 (0), and 𝑘★(𝜃𝐿) = K𝐿 (𝜌) for 𝜌 =
P(𝜃𝐻 )
P(𝜃𝐿) =

𝛼𝐿

1−𝛼𝐻
. The rent-versus-efficiency

boils down to offering an optimal distortion to the low type that binds the 𝐼𝐶𝐻 constraint,

9



and payments are further pinned down by the binding 𝐼𝑅𝐿 constraint. The reader can verify

that this contract satisfies the remaining constraints, namely 𝐼𝑅𝐻 and 𝐼𝐶𝐿.

In addition to static considerations, in the dynamic problem, the distortion offered to

the low type (and potentially the high type) evolves over time as a function of information

asymmetry driven by the Markov process, and extent of differential discounting 𝛿𝑃 − 𝛿𝐴.

3.3 Two-period problem

To understand the basics of dynamics, we start first with the two-period problem. As in

the static model above, we invoke the relaxed problem approach (sometimes referred to as

the first-order approach), wherein we maximize the objective subject to downward incentive

constraints and individual rationality constraint of the low type:

max
⟨k,U⟩

𝑆 −𝑈𝐴 − 𝐼 subject to k ⩾ 0 and 𝐼𝐶𝐻 , 𝐼𝑅𝐿 .
18

We show in the appendix that both 𝐼𝐶𝐻 and 𝐼𝑅𝐿 bind at the solution to the relaxed prob-

lem. These binding constraints can then be used to substitute for 𝑈1 and 𝑢2 in the above

expression for 𝑈𝐴 and 𝐼, which now become functions of the primitives and allocation rule,

k. Finally, we optimize to obtain the allocations that solve the relaxed problem. The so-

lution is recorded in the following proposition. Recollect that we define 𝜃𝐻𝑅
′(𝑘𝑒

𝐻
) = 1 and

K𝐿 (𝜌) = (𝑅′)−1
(

1
𝜃𝐿−𝜌Δ𝜃

)
for 𝜌Δ𝜃 < 𝜃𝐿, zero otherwise.

Proposition 1. The following supply contract k# characterizes the solution to the relaxed

problem:

a) 𝑘#𝑡 (𝜃t−1, 𝜃𝐻) = 𝑘𝑒𝐻 for all ∀𝜃t−1;

b) 𝑘#𝑡 (𝜃tL) = K𝐿 (𝜌𝑡 ) for 𝜌2 = 𝛿𝐴

𝛿𝑃

𝛼𝐻−𝛼𝐿

1−𝛼𝐿
𝜌1 +

(
1 − 𝛿𝐴

𝛿𝑃

)
𝛼𝐿

1−𝛼𝐿
, 𝜌1 =

P(𝜃𝐻 )
P(𝜃𝐻 ) ;

c) 𝑘#𝑡 (𝜃𝐻 , 𝜃𝐿) = K𝐿 (𝜌1) for 𝜌1 =
(
1 − 𝛿𝐴

𝛿𝑃

)
𝛼𝐻

1−𝛼𝐻
.

The high type is always supplied the efficient allocation, and the supply to the low type

is distorted downwards. The distortions are pervasive in that 𝑘𝑡 (𝜃t−1, 𝜃𝐿) < 𝑘𝑒
𝐿
for all 𝜃t−1.

We now present the intuition for how these distortions are generated.

Start with the case where 𝛿𝑃 = 𝛿𝐴, then there is no intertemporal cost of incentive

provision, that is 𝑈𝑃 = 𝑈𝐴. The binding 𝐼𝑅𝐿 and 𝐼𝐶𝐻 constraints give us

𝑈1(𝜃𝐿) = 0, 𝑈1(𝜃𝐻) = Δ𝜃𝑅(𝑘1(𝜃𝐿)) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)Δ𝜃𝑅(𝑘2(𝜃2L)) and 𝑈𝐴 = 𝑈1(𝜃𝐻)P(𝜃𝐻).

The only allocations that appear in the rents are 𝑘1(𝜃𝐿) and 𝑘2(𝜃2L), for which the optimal

distortions are positive. In the first period, this is captured by the coefficient 𝜌1, which

18The statement of the problem is the same as in Section 2.3 with the only difference that 𝑇 = ∞ is replaced
by 𝑇 = 2 in the all the summations.
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is the same as in the static model. Due to persistence in private information, 𝛼𝐻 ⩾ 𝛼𝐿,

the distortion propagates to the second period along the history of consecutive low shocks:

𝜌2 =
𝛼𝐻−𝛼𝐿

1−𝛼𝐿
𝜌1. It is easy to see that 𝛼𝐻−𝛼𝐿

1−𝛼𝐿
< 1, thus the distortions are decreasing along the

low history. Note that if 𝛼𝐻 = 𝛼𝐿, so the model is iid, there are no distortions in the second

period. Hence, persistence is critical for the propagation of distortions along the history of

consecutive low shocks. However, the distortions are muted after the high shock, i.e., 𝜌1 = 0

and 𝑘2(𝜃𝐻 , 𝜃𝐿) = 𝑘𝑒𝐿. The principal had already managed to extract upfront the information

rent to be paid at this history, and thus the shadow price of providing incentives here is zero.

Now, let 𝛿𝑃 > 𝛿𝐴. For fixed allocations 𝑘1(𝜃𝐿) and 𝑘2(𝜃2L) the value of 𝑈𝐴 goes down.

However, now the principal also incurs the intertemporal cost of incentive provision, which

through the binding 𝐼𝐶𝐻 and 𝐼𝑅𝐿 constraints of the second period is given by

𝐼 = (𝛿𝑃 − 𝛿𝐴)
(
Δ𝜃𝑅(𝑘 (𝜃𝐻 , 𝜃𝐿)𝛼𝐻P(𝜃𝐻) + Δ𝜃𝑅(𝑘2(𝜃2L))𝛼𝐿P(𝜃𝐿)

)
.

This interaction of 𝐼𝐶𝐻 and 𝐼𝑅𝐿 in the second period generates new distortions for the allo-

cations that appear in the expression for 𝐼. In Proposition 1, 𝑎𝐻 :=
(
1 − 𝛿𝐴

𝛿𝑃

)
𝛼𝐻

1−𝛼𝐻
represents

the coefficient of the distortion for allocation 𝑘2(𝜃𝐻 , 𝜃𝐿), and 𝑎𝐿 :=
(
1 − 𝛿𝐴

𝛿𝑃

)
𝛼𝐿

1−𝛼𝐿
represents

the added distortion for allocation 𝑘2(𝜃2L).
To summarize, the low type in the first period is delivered a static distortion 𝜌1. Then,

if another low shock is realized in the second period, a new distortion 𝑎𝐿 is added, and the

previous distortion is multiplied by 𝑏 := 𝛿𝐴

𝛿𝑃

𝛼𝐻−𝛼𝐿

1−𝛼𝐿
, resulting in 𝜌2 = 𝑏𝜌1 + 𝑎𝐿. If on the

other hand a low shock is realized in the second period after a high type, then there is no

propagation from the previous period, just a new seed distortion, given by 𝜌1 = 𝑎𝐻 . In the

next section we will see that these four terms— starter 𝜌1, propagator 𝑏, adder 𝑎𝐿 and seed

𝑎𝐻— define all distortions for the infinite horizon model. But before that, two final thoughts

for the two-period problem.

Once k# is determined by Proposition 1, the utilities, U#, are uniquely pinned down

by the six binding constraints. This is in contrast to the model with equal discounting

where only the first period expected utilities 𝑈1(𝜃𝐻) and 𝑈1(𝜃𝐿) are uniquely pinned down.

Moreover, it is possible that the seed 𝑎𝐻 is large enough so that at the first-order optimum,

𝑘
#
2 (𝜃𝐻 , 𝜃𝐿) ≪ 𝑘

#
2 (𝜃2L). Then, even though (𝜃𝐻 , 𝜃𝐿) is a “better” history than 𝜃2L in terms of

productivity shocks, the capital allocations are switched in a strong way. In this case the

upward constraint 𝐼𝐶𝐿 can start binding in the first period. violating the validity of the

relaxed problem approach. For the two period model a necessary and sufficient condition for

the validity for the relaxed problem approach can be immediately generated by plugging the

allocations, k#, into 𝐼𝐶𝐿. The resulting inequality delivers a condition on the primitives.
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4 The relaxed problem

4.1 Optimal contract

As we did in the two-period problem, we start with the standard relaxed problem (or first-

order) approach, wherein the incentive constraint for the low type and the individual ratio-

nality constraint for the high type are ignored :

(#) Π# := max
⟨k,U⟩

𝑆 −𝑈𝐴 − 𝐼 subject to k ≥ 0 and 𝐼𝐶𝐻 , 𝐼𝑅𝐿 .

We will denote the solution to this problem by ⟨k#,U#⟩ and its profit by Π#. This is often

referred to in the literature as the first-order optimum, because it only takes the ”first-order

constraints” into an account. The goal now is to express the profit solely as a function of

allocations by substituting away transfers from the set of binding constraints.

Start by rewriting 𝐼𝐶𝐻 as follows:

𝑈𝑡 (𝜃t−1, 𝜃𝐻)−𝑈𝑡 (𝜃t−1, 𝜃𝐿) ⩾ Δ𝜃𝑅(𝑘𝑡 (𝜃t−1, 𝜃𝐿))+𝛿𝐴(𝛼𝐻−𝛼𝐿)
(
𝑈𝑡+1(𝜃t−1, 𝜃𝐿 , 𝜃𝐻)−𝑈𝑡+1(𝜃t−1, 𝜃2𝐿)

)
.

In the appendix, we show that 𝐼𝐶𝐻 and 𝐼𝑅𝐿 always bind at the optimum. Then, the following

identity is generated by the inductive application of binding constraints:

𝑈𝑡 (𝜃t−1, 𝜃𝐻) =
∞∑︁
𝑠=1

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑠−1 Δ𝜃𝑅(𝑘𝑡−1+𝑠 (𝜃t−1, 𝜃sL)). (1)

Equation (1) gives the expression for the principal’s expected payment in terms of the allo-

cations:

𝑈𝐴 + 𝐼 = E[𝑈1(𝜃1)] + (𝛿𝑃 − 𝛿𝐴)
∞∑︁
𝑡=2

𝛿𝑡−2𝑃 E
[
𝑈𝑡 (𝜃t)

]
= (2)

=

∞∑︁
𝑡=1

𝛿𝑡−1𝑃 · 𝜌𝑡 · Δ𝜃𝑅
(
𝑘𝑡 (𝜃tL)

)
P(𝜃tL) +

∑︁
𝜃t−1

∞∑︁
𝑠=1

𝛿𝑡−1+𝑠𝑃 · 𝜌𝑠 · Δ𝜃𝑅
(
𝑘𝑡+𝑠 (𝜃t−1, 𝜃𝐻 , 𝜃sL)

)
P(𝜃t−1, 𝜃𝐻 , 𝜃sL),

where {𝜌𝑡 } and {𝜌𝑡 } are (deterministic) measures of agent’s information rents, respectively

for the lowest history where no high type is ever realized and all other histories where at least

one high type occured at some point. Equation (2) implies an important property of the

sequential structure of distortions: Any two histories with the same time since the last high

shock are isomorphic. So, the distortion for both histories (𝜃𝐿 , 𝜃𝐻 , 𝜃𝐿) and (𝜃𝐿 , 𝜃𝐻 , 𝜃𝐻 , 𝜃𝐿)
is given by 𝜌1, and more generally for any arbitrary history (𝜃t−1, 𝜃𝐻 , 𝜃sL) it is given by 𝜌𝑠.

Recall that we define 𝜃𝐻𝑅
′(𝑘𝑒

𝐻
) = 1 and K𝐿 (𝜌) = (𝑅′)−1

(
1

𝜃𝐿−𝜌Δ𝜃

)
for 𝜌Δ𝜃 < 𝜃𝐿, zero

otherwise. Optimizing the objective over the set of allocations, we have the following result.

Theorem 1. The following supply contract k# characterizes the solution to the relaxed prob-

lem (Problem (#)):
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a) 𝑘#𝑡 (𝜃t−1, 𝜃𝐻) = 𝑘𝑒𝐻 for all ∀𝜃t−1;

b) 𝑘#𝑡 (𝜃tL) = K𝐿 (𝜌𝑡 ) for 𝜌𝑡 = 𝑏𝜌𝑡−1 + 𝑎𝐿, 𝜌1 = P(𝜃𝐻 )
P(𝜃𝐻 ) ;

c) 𝑘#𝑡+𝑠 (𝜃t−1𝜃𝐻 , 𝜃sL) = K𝐿 (𝜌𝑠) for all ∀𝜃t−1 for 𝜌𝑡 = 𝑏𝜌𝑡−1 + 𝑎𝐿, 𝜌1 = 𝑎𝐻 , where

𝑏 =
𝛿𝐴

𝛿𝑃

𝛼𝐻−𝛼𝐿

1−𝛼𝐿
and 𝑎 𝑗 =

(
1 − 𝛿𝐴

𝛿𝑃

)
𝛼𝑗

1−𝛼𝑗
for 𝑗 = 𝐻, 𝐿.

The high type allocations are always efficient, whereas the low type allocations are dis-

torted by {𝜌𝑡 } along the lowest history and by {𝜌𝑡 } if at least one high shock arrived in the

past. The closed form expressions for {𝜌𝑡 } and {𝜌𝑡 } are provided in Theorem 1. We call 𝜌1

the starter since it is how distortions begin. From then on, every successive low type carries

over the previous distortion with the propagator 𝑏, and bolsters it with 𝑎𝐿, which we term

the adder. This culminates into the identity 𝜌𝑡 = 𝑏𝜌𝑡−1 + 𝑎𝐿. Once a high shock arrives

all previous distortions are erased. The realization of a new low type leads to a new seed

distortion 𝜌1 = 𝑎𝐻 , which is then propagated and added to as before for consecutive low

shocks: 𝜌𝑡 = 𝑏𝜌𝑡−1 + 𝑎𝐿. We now study the properties of the dynamic contract more closely,

in particular the cyclicality of optimal distortions.

4.2 Properties of the optimal contract

The seed, adder, and propagator lend a cyclical pattern to the optimal distortions, a property

which we will term restart, and the contract that adopts this property to be a restart contract.

Figure 1 illustrates graphically the workings of a general restart contract. The contract starts

in the white circle on the left. If the agent reports 𝜃𝐻 , then 𝑘𝐻 is supplied irrespective of

the previous history. If 𝜃𝐿 is reported in the first period then the allocation is 𝑘1, followed

by 𝑘𝑡 for every subsequent announcement of 𝜃𝐿. If 𝜃𝐿 is reported immediately after 𝜃𝐻 , then

𝑘1 is allocated, followed by 𝑘𝑡 for every subsequent announcement of 𝜃𝐿. The restart feature

is captured by the fact that the allocation always returns to 𝑘𝐻 on the realization of a high

shock, and remains there until a low shock is realized, which triggers the sequence {𝑘𝑡 }. The
first-order optimal allocations, identified in Theorem 1, constitute a restart contract. The

high type allocation is efficient, i.e., 𝑘#
𝐻
:= 𝑘𝑒

𝐻
, whereas the low type allocations are given by

two sequences: 𝑘#𝑡 := K𝐿 (𝜌𝑡 ) and 𝑘#𝑡 := K𝐿 (𝜌𝑡 ).
The starter and the propagator are present in the standard equal discounting model,

whereas the adder and seed are created by unequal discounting. This can be readily seen by

observing lim
𝛿𝐴→𝛿𝑃

𝑎𝐻 = lim
𝛿𝐴→𝛿𝑃

𝑎𝐿 = 0. When 𝛿𝐴 = 𝛿𝑃, the arrival of a high shock permanently

removes all distortions— the principal is still paying the information rent generated by the

efficient allocation, but this had been extracted through the upfront payment at the start

of the contract, and hence the shadow price of all these incentives is zero. Moreover, along

the consecutive low shock history, distortions propagate and eventually converge to zero.

Battaglini [2005] calls these properties generalized no distortion at the top and vanishing
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Figure 1: The evolution of allocation in a restart contract. A red arrow indicates a transition,
because of a high report, and blue a transition because of a low report.

distortions at the bottom, respectively. In terms of Theorem 1, these respectively imply

𝑘
#
𝐻
= 𝑘𝑒

𝐻
and 𝑘#

𝑡+1 ⩾ 𝑘
#
𝑡 with 𝑘#𝑡 → 𝑘𝑒

𝐿
.

When 𝛿𝑃 > 𝛿𝐴, we have 𝑈𝑃 = 𝑈𝐴 + 𝐼, where 𝑈𝐴 is the net present value of standard

information rent and 𝐼 is the intertemporal costs of incentive provision. While 𝑈𝐴 is now

reduced from the perspective of the principal, 𝐼 is an added cost which ensures that 𝐼𝑅𝐻 and

𝐼𝑅𝐿 bind permanently. Put differently, for any fixed sequence of allocations, 𝑈𝐴 is decreasing

in 𝛿𝐴 and 𝐼 is increasing in 𝛿𝐴. These competing forces interact to endogenously determine

the optimal level of allocative distortions presented in Theorem 1. The main conceptual

departure from the standard model is that backloading is now constrained by how much of

the dynamic information rent the principal can extract upfront since the agent values the

future less.

This is also a good place to make a comparative observation on dynamic models of agency.

If we operated in the iid model, so that 𝛼𝐻 = 𝛼𝐿, distortions are periodically renewed,

𝑎𝐻 = 𝑎𝐿 > 0, but they are completely static. Since there is no propagation, 𝑏 = 0, there is

no memory. In addition, if discounting is equal, then 𝑎𝐻 = 𝑎𝐿 = 0— there are no distortions

at all beyond the first period. Therefore, to make the analysis empirically relevant, the iid

models of agency (such as Clementi and Hopenhayn [2006]) and Biais et al. [2007]) invoke

limited liability as a natural constraint that introduces history dependent distortions. That

modeling choice would imply strengthening individual rationality from U ⩾ 0 to u ⩾ 0. In

earlier work, Krasikov and Lamba [2021], we have explored this model, under persistence. In

contrast, here we allow for the more permissive individual rationality constraint U ⩾ 0, so that

movement of transfers across time is feasible, but it is constrained by unequal discounting.

The magnitude of distortions can be more precisely described. The allocation for con-

secutive low shocks is monotonically increasing. Two things can happen in the time limit:

either the limit allocation is positive, or even in the limit the distortions are not small enough
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to make the allocation positive. In the latter case the principal permanently shuts down the

market for the low type agent. More generally, we can define shutdown as follows.

Definition 1. A contract ⟨k,U⟩ is said to be shutdown if lim inf
𝑡→∞

P
(
𝑘𝑡 (𝜃t−1, 𝜃𝐿) = 0

)
∈ (0, 1],

and it is said to be permanently shutdown if lim inf
𝑡→∞

P
(
𝑘𝑡 (𝜃t−1, 𝜃𝐿) = 0

)
= 1.

The following list consolidates the key properties exhibited by the dynamic distortions of

the first-order optimal contract.

Corollary 1. The first-order optimal contract (solution to Problem (#)) satisfies the follow-

ing properties:

(a) distortions are monotonically decreasing: 𝜌𝑡 > 𝜌𝑡+1 and 𝜌𝑡 > 𝜌𝑡+1 for all 𝑡;

(b) distortions are pervasive: lim
𝑡→∞

𝜌𝑡 = lim
𝑡→∞

𝜌𝑡 =
𝑎𝐿

1−𝑏 > 0;

(c) there are shutdowns, i.e., 𝑘#𝑡 = 0 for some 𝑡, whenever 𝜃𝐿 ≤ 𝜌1Δ𝜃;

(d) shutdowns are permanent, i.e., 𝑘#𝑡 = 0 for all 𝑡, whenever 𝜃𝐿 ≤ lim
𝑡→∞

𝜌𝑡Δ𝜃.

The evolution of distortions here is distinct than both the equal discounting model without

financial constraints (eg. Battaglini [2005] and Pavan, Segal, and Toikka [2014]), and the equal

discounting model with hard financial constraints (eg. Krishna, Lopomo, and Taylor [2013]

and Krasikov and Lamba [2021]). In the former case, depending on the generality of the

model, distortions are monotonically decreasing and the efficient allocation is reached in the

limit, either along every history, almost surely, or at least on average. In the latter case the

distortions are monotonically increasing for consecutive bad (or low) shocks, but the contract

still does converge almost surely to the efficient allocation. Thus, in their pervasiveness, the

distortion dynamics here is distinct from both cases, and decreasing distortions for successive

low shocks is reminiscent of the former case.

4.3 Validity of the relaxed problem approach

Finally, we identify the set of primitives for which the first-order optimum is globally optimal,

that is when all upward incentive constraints are slack. Observe that the binding 𝐼𝐶𝐻 and

𝐼𝑅𝐿 uniquely pin down transfers as a function of allocation, which is documented in the

following simple result.

Corollary 2. The first-order optimal payments are as follows:

a) 𝑈#
𝑡 (𝜃t−1, 𝜃𝐿) = 0 for all 𝜃t−1;

b) 𝑈#
𝑡 (𝜃t−1L , 𝜃𝐻) = 𝑈𝑡 for 𝑈

#
𝑡 := Δ𝜃

∞∑
𝑠=𝑡

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑠−𝑡𝑅(𝑘#𝑠 );

c) 𝑈#
𝑡+𝑠 (𝜃t−1, 𝜃𝐻 , 𝜃s−1L , 𝜃𝐻) = 𝑈#

𝑠 for all 𝜃t−1 for 𝑈#
𝑡 := Δ𝜃

∞∑
𝑠=𝑡

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑠−𝑡𝑅(𝑘#𝑠 ),
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where 𝑘#𝑡 = K𝐿 (𝜌𝑡 ) and 𝑘#𝑡 = K𝐿 (𝜌𝑡 ), {𝜌𝑡 } and {𝜌𝑡 } are as defined in Theorem 1.

The low type always gets zero expected payoff. Similar to the optimal distortions, the

high type’s payoff is determined by two sequences, {𝑈𝑡 } and {𝑈𝑡 }: The first determines utility

along the history of consecutive low shocks, and the second, as a function of the number of

low shocks since the last high shock. We use Corollary 2 to understand when the first-order

optimum satisfies 𝐼𝐶𝐿, which can be rewritten as follows:

𝑈𝑡 (𝜃t−1, 𝜃𝐻) −𝑈𝑡 (𝜃t−1, 𝜃𝐿) ⩽ Δ𝜃𝑅
(
𝑘𝑒𝐻

)
+ 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)

(
𝑈𝑡+1(𝜃t−1, 𝜃2𝐻) −𝑈𝑡+1(𝜃t−1, 𝜃𝐻 , 𝜃𝐿)

)
.

According to Corollary 2, the number of periods since the last high shock is a sufficient statis-

tics for the agent’s utilities. As a result, the upward incentive constraint can be succinctly

rewritten as
maximal payoff for 𝜃𝐻

after 𝑡 consecutive low shocks︷             ︸︸             ︷
max{𝑈#

𝑡 ,𝑈
#
𝑡 } ⩽

𝜃′
𝐿
𝑠 payoff from misreporting.︷                                ︸︸                                ︷

Δ𝜃𝑅(𝑘𝑒𝐻)︸     ︷︷     ︸
static

+ 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈#
1︸                ︷︷                ︸

dynamic

.

Since the first-order optimal distortions are monotonically decreasing in the number of low

shocks (see Corollary 1) the tightest upward incentive constraint is one at “infinity”. The

following corollary makes this statement precise.

Corollary 3. The first-order optimum is globally optimal if and only if the following holds:

lim
𝑡→∞

𝑈
#
𝑡 = lim

𝑡→∞
𝑈

#
𝑡 ⩽ Δ𝜃𝑅(𝑘𝑒𝐻) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈#

1 .

The intuition for this result can be expressed as follows. Take two histories, the lowest

one 𝜃t+sL and one where one high shock has been realized (𝜃tL, 𝜃𝐻 , 𝜃
s−1
L ). In period 𝑡 +1, for the

first history, the allocation is 𝑘#
𝑡+1 and for the second history it is 𝑘#1 . If the parameters are

such that the seed distortion 𝜌1 is high, then for a large enough 𝑡, since 𝑘#𝑡 is increasing in 𝑡,

we have a situation where 𝑘#𝑡+𝑠 (𝜃t+sL ) ≫ 𝑘
#
𝑡+𝑠 (𝜃tL, 𝜃𝐻 , 𝜃

s−1
L ). In other words, the allocation along

the history 𝜃t+sL is much larger than along (𝜃tL, 𝜃𝐻 , 𝜃
s−1
L ) even though the latter is ”better” in

terms of the sequence of productivity shocks. When this force is strong, the inequality in

Corollary 3 is violated.

It can be noted that Corollary 3 is a necessary and sufficient condition on the primitives

of the environment. This is because Corollary 2 pins down the formula for {𝑈#
𝑡 } and {𝑈#

𝑡 }
in the terms of the parameters. Since the condition is tight, there is no obvious way of

simplifying it. In the next result, we provide a stronger sufficient condition for the invalidity

of the first-order approach that has a clearer intuitive appeal.

Corollary 4. Fix 0 < 𝛿𝐴 ⩽ 𝛿𝑃 < 1. Then for any Markov process 1 > 𝛼𝐻 ⩾ 𝛼𝐿 > 0 that
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satisfies

(1 − 𝛼𝐿) (𝛼𝐻 − 𝛼𝐿)
(
𝛼𝐻

1 − 𝛼𝐻

− 𝛼𝐿

1 − 𝛼𝐿

)
⩾

1

𝛿𝐴

(
1 − 𝛿𝐴

𝛿𝑃

) ,
there exists Δ𝜃 small enough so that the first-order optimum is not incentive compatible.

To simplify the condition stated above, assume a symmetric Markov process: 𝛼𝐻 = 1−𝛼𝐿 =

𝛼, so 𝛼 is the persistence. Then, the inequality can be rewritten as

𝛼(2𝛼 − 1)
(
𝛼

1 − 𝛼 − 1 − 𝛼
𝛼

)
⩾

1

𝛿𝐴

(
1 − 𝛿𝐴

𝛿𝑃

) . (3)

Inequality (3) can be used to derive some intuition about the (in)validity of the re-

laxed problem approach. Figure 2 partitions the parameter space along the set of binding

constraints— 𝛼 on the x-axis and 𝛿𝐴 on the y-axis, and three plots for different values of Δ𝜃.

White and yellow regions represent the validity of the relaxed problem approach, the dark

region is the space where the upward incentive constraints bind. The white portion in the

southwest corner also represents the case of (permanent) shutdown, no capital is supplied to

the low type.

Note that the right-hand side of (3) is inversely quadratic in 𝛿𝐴, the term explodes as

𝛿𝐴 → 0 and 𝛿𝐴 → 𝛿𝑃. In both cases, for any fixed Markov process, (3) is not satisfied, and

numerically we can see in Figure 2 that the relaxed problem approach is valid. In contrast,

for fixed discounting, as 𝛼 → 1 the left-hand side of (3) explodes, so the sufficient condition

is satisfied and the relaxed problem approach is violated. Finally, as 𝛼 → 1
2 , the Markov

process becomes iid and the right-hand side of (3) converges to zero, and we know for the iid

model, the relaxed problem approach is valid.
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(a) Δ𝜃 = 0.1
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(b) Δ𝜃 = 1.1
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(c) Δ𝜃 = 2.1

Figure 2: Partitioning parameter space into set of binding constraints. White & yellow: first-order
approach works and optimal contract is restart. White: low type is shutdown. Black: upward
constraint binds. Here, 𝛼𝐻 = 1− 𝛼𝐿 = 𝛼 on the x-axis, 𝛿𝐴 on the y-axis; 𝛿𝑃 = 0.8, 𝑅(𝑘) = 2

√
𝑘, 𝜃𝐿 = 1.

The requirement of the smallness of Δ𝜃 for the sufficiency condition in Corollary 4 is also

depicted in the shrinking region of binding upward incentive constraints in Figure 2 as we

increase the value of Δ𝜃. A larger value of Δ𝜃 signifies greater ex ante asymmetric information,

hence a high distortion for the low type in the first place. So, the non-monotonicity desired

above for Corollary 3, viz., 𝑘#𝑡+𝑠 ≫ 𝑘
#
𝑠 for large enough 𝑡, no longer holds, or at least not
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strongly enough for 𝐼𝐶𝐿 to be violated. In fact, for large enough value of Δ𝜃 as in Figure 2c,

the low-type can be shutdown, which is the highest possible distortion.

5 Restart contract

What can the principal do if she faces parameters for which the relaxed problem approach is

not valid? For starters, she can brute force her way to determine the optimal contract despite

the large number of binding constraints. We provide this solution in the recursive format—

the problem and its solution are detailed in the appendix. However, an alternative, and to us

a more appealing, solution is to look for the optimum within the restrictive class of restart

contracts that are incentive compatible, simple and approximately optimal.19

5.1 The optimal restart contract

A restart contract, described informally above, can be defined formally as follows.

Definition 2. A contract ⟨k,U⟩ is called restart if there exists a number 𝑘𝐻 and a sequence

{𝑘𝑡 } such that for all 𝜃t−1, we have

𝑘𝑡 (𝜃t−1, 𝜃𝐻) = 𝑘𝐻 , 𝑘𝑡+𝑠 (𝜃t−1, 𝜃𝐻 , 𝜃sL) = 𝑘𝑠 ∀𝑠.

This definition is depicted in Figure 1. It essentially requires a measurability restriction

on the allocation rule: all relevant history dependence is encoded in the number of consecutive

low shocks since the last high realization. The allocation is completely characterized by the

number 𝑘𝐻 and two sequences {𝑘𝑡 } and {𝑘𝑡 }. The first sequence, {𝑘𝑡 }, defines the allocation

for consecutive low shocks after a high shock has been realized, and the second sequence,

{𝑘𝑡 }, defines the allocation to the low type along the lowest history, where the high type has

never been realized in the past.20 It is immediately clear from Theorem 1 that the first-order

optimal contract is indeed a restart contract.

In this section, we search for the optimum in a restrictive class of contracts that are

required to be restart and satisfy the full set of constraints; moreover 𝐼𝐶𝐻 must hold as an

equality:

(𝑅) Π𝑅 := max
⟨k,U⟩:⟨k,U⟩ is restart, 𝐼𝐶𝐻 binds

𝑆−𝑈𝐴−𝐼 subject to k ≥ 0 and 𝐼𝐶𝐻 , 𝐼𝐶𝐿 , 𝐼𝑅𝐻 , 𝐼𝑅𝐿 .

19As mentioned in the introduction, we find restart contracts appealing for four reasons: First, is an intrinsic
normative appeal to the idea of restartness in the form of ”let bygones be bygones”. Second, these contracts
generated through unequal discounting connects to a sizeable literature in economics, particularly public
finance, political economy and sovereign debt. Third, restart contracts arise naturally as the solution to the
relaxed problem, which is quite the standard in contract theory. Fourth, these contracts are simple in the
sense that will be described in Section 6.

20The second sequence is left out in Definition 2 for simplicity, because it is implicit that since the lowest
history is the only one which cannot be written in the form (𝜃t−1, 𝜃𝐻 , 𝜃sL), it will have its own sequence of
allocations.
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We will denote the solution of this problem by ⟨kR,UR⟩, and refer to it as the restart opti-

mum.21, 22

When the optimal contract is restart, there is no loss from this extra restriction. It is

easy to see that Problems (★), (#) and (𝑅) all have the same objective, but they are nested

by the set of constraints imposed on that objective in the following way: (#) ⊂ (★) ⊂ (𝑅).
Hence, Π𝑅 ⩽ Π★ ⩽ Π#, and Π𝑅 = Π★ = Π#, whenever the relaxed problem approach is valid.

In what follows we describe the restart optimum, ⟨kR,UR⟩, and then provide a theoretical

bound to precisely capture the gap in profit generated by ⟨k★,U★⟩ and ⟨kR,UR⟩.

Theorem 2. There exists 𝛾 ⩾ 0 such that the restart optimum is as follows:

a) 𝑘𝑅
𝐻
⩾ 𝑘#

𝐻
= 𝑘𝑒

𝐻
;

b) 𝑘𝑅𝑡 = K𝐿 (𝛾𝑡 ) for 𝛾𝑡 = max{𝛾, 𝑏𝛾𝑡−1 + 𝑎𝐿} for some 𝛾1 ⩾ 𝜌1 =
P(𝜃H)
P(𝜃𝐿) ;

c) 𝑘𝑅𝑡 = K𝐿 (𝛾𝑡 ) for 𝛾𝑡 = max{𝛾, 𝑏𝛾𝑡−1 + 𝑎𝐿} for some 𝛾1 ⩽ 𝜌1 = 𝑎𝐻 ,

where 𝑏 =
𝛿𝐴

𝛿𝑃

𝛼𝐻−𝛼𝐿

1−𝛼𝐿
and 𝑎 𝑗 =

(
1 − 𝛿𝐴

𝛿𝑃

)
𝛼𝑗

1−𝛼𝑗
for 𝑗 = 𝐻, 𝐿.

Theorem 2 describes the optimal distortions for the low type along the two classes of

histories, first where no high type is realized and second where at least one high type has

been realized; these are given by {𝛾𝑡 } and {𝛾𝑡 }, respectively. The contract here is analogous

to the first-order optimal contract (Theorem 1), with three key differences: First, the high

type allocation is (potentially) distorted upwards. Second, the starter is (weakly) higher and

the seed (weakly) lower than its first-order optimum counterpart, i.e., 𝛾1 ⩾ 𝜌1 and 𝛾1 ⩽ 𝜌1.

Third, there is a floor 𝛾 on distortions, i.e., 𝛾𝑡 , 𝛾𝑡 ⩾ 𝛾 for all 𝑡. Since distortions are still

decreasing this means if the floor binds for 𝛾𝑡 or 𝛾𝑡 , it binds for 𝛾𝑡+𝑠 or 𝛾𝑡+𝑠 as well, and

thence the contract has finite memory.23

Further, note that the propagator 𝑏 and the adder 𝑎𝐿 are the same as before. The “initial”

allocation is determined by three numbers 𝑘𝑅
𝐻
, 𝛾1 and 𝛾1. These are picked using the first-

order conditions presented in the appendix. Finally, the floor 𝛾, is uniquely determined

according to the complementary slackness of the corresponding upward incentive constraints

(𝐼𝐶𝐿).

5.2 Approximate global optimality

How well does the optimal restart contract perform? By construction, Π𝑅 ⩽ Π★. Unfor-

tunately, the gap between the two is very hard to theoretically compute when the upward

21In general, the optimal restart contract does not have to satisfy all the downward constraints as equality.
We require 𝐼𝐶𝐻 to bind to reduce complexity of the problem, and the difference in profits is very small by not
having this added restriction. Both the notion of complexity and bound on profits will be made precise.

22Technically, our approach here is somewhat analogous to Chassang [2013] in that it emphasizes the search
for approximately optimal contracts by constraining the instruments available to the principal, but it is also
different in that we do still operate within the Bayesian paradigm and demand incentive compatibility.

23However, it must be noted that the optimal restart contract has positive memory in that it is not the
same as the static optimum, it does strictly better than the repetition of the static optimum.

19



constraints bind, because it requires us to solve a system of non-linear equations defining the

values of {𝛾, 𝑘𝑅
𝐻
, 𝛾1, 𝛾1} as described in Theorem 2. However, we can still bound the loss by

using the expression for the first-order optimal contract, Π#, which is calculable in a closed

form. Since Π★ ⩽ Π#, we must have Π★ − Π𝑅 ⩽ Π# − Π𝑅. So, our goal here is to bound

Π# −Π𝑅, which then provides an upper bound for Π★ −Π𝑅 as well. We estimate the former

gap using sensitivity analysis. We first describe the general mathematical argument and then

show how it can be applied to our context.

Remark 1. Consider the problem of maximizing a smooth concave function 𝑓 : 𝑋 → R

subject to a set of linear inequality constraints: 𝐴𝑥 ⩾ 0, where 𝑋 is a closed subset of R𝑛+ and

𝐴 is an 𝑚×𝑛 matrix of the coefficients. The set 𝑋 here incorporates all additional constraints,

i.e., linear equality constraints, that can be required.

Suppose that the function 𝑓 admits a maximizer on 𝑋, say 𝑥∗. The goal is to assess the

gap between 𝑓 (𝑥∗) and max
𝑥∈𝑋

𝑓 (𝑥) subject to 𝐴𝑥 ⩾ 0. In order to estimate the gap, it is useful

to introduce the following auxiliary problem parametrized by 𝜀 ⩾ 0:

Π(𝜀) := max
𝑥⩾0

𝑓 (𝑥) subject to 𝐴𝑥 ⩾ 𝜀min {0, 𝐴𝑥∗} .

The auxiliary problem admits a solution for every 𝜀 ⩾ 0, because the unconstrained problem

does. Note that Π(1) = 𝑓 (𝑥∗), because 𝑥∗ is feasible whenever 𝜀 = 1, and Π(0) corresponds to

the optimal value in the original problem.

Since the problem is concave and bounded, strong duality holds, and thus we can express

the value of the auxiliary problem as

Π(𝜀) = min
𝜆⩾0

max
𝑥⩾0

𝑓 (𝑥) + 𝜆 · (𝐴𝑥 − 𝜀min {0, 𝐴𝑥∗}) .

It follows that Π(1) ⩽ max
𝑥⩾0

𝑓 (𝑥) + 𝜆(0) · (𝐴𝑥 −min {0, 𝐴𝑥∗}), where 𝜆(0) is the dual variable

associated with the constraint for 𝜀 = 0. Combining the inequality with the definition of Π(0),
we finally obtain the following estimate:

Π(1) − Π(0) ⩽ 𝜆(0) ·max {0,−𝐴𝑥∗} .

In our setting: we maximize the seller’s profit over ⟨k,U⟩ which is restart and satisfies

(𝐼𝐶𝐻) as an equality. Similarly to Corollary 2, the low type’s utilities are zero at all dates

and the high type’s utilities feature restarts:

a) 𝑈𝑡 (𝜃t−1, 𝜃𝐿) = 0 for all 𝜃t−1;

b) 𝑈𝑡 (𝜃t−1L , 𝜃𝐻) = 𝑈𝑡 for 𝑈𝑡 := Δ𝜃
∞∑
𝑠=𝑡

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑠−𝑡𝑅(𝑘𝑠);

c) 𝑈𝑡+𝑠 (𝜃t−1, 𝜃𝐻 , 𝜃s−1L , 𝜃𝐻) = 𝑈𝑠 for all 𝜃t−1 for 𝑈𝑡 := Δ𝜃
∞∑
𝑠=𝑡

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑠−𝑡𝑅(𝑘𝑠),
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Moreover, we require the upward incentive constraints (𝐼𝐶𝐿) to hold, these form the set of

linear inequality constraints:

𝑈𝑡 ⩽ Δ𝜃𝑅(𝑘𝐻) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈1, 𝑈𝑡 ⩽ Δ𝜃𝑅(𝑘𝐻) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈1. (4)

The first-order optimum solves the problem when (4) is ignored yielding the minimal slack,

then our estimate of loss combines this slack and Lagrange multipliers when (4) is imposed.

Attach a Lagrange multiplier to each upward incentive constraint, say 𝜂𝑡 and 𝜂𝑡 , and

evaluate the multipliers at the restart optimum.24 Quantify how much slack needs to be

added to these constraints so that the solution then coincides with the first-order optimum.25

Remark 1 implies the following estimate:

Π# − Π𝑅 ⩽
∞∑︁
𝑡=1

𝛿𝑡−1𝑃 P(𝜃
t
L)𝜂𝑡 · 𝜖𝑡 +

P(𝜃𝐻)
1 − 𝛿𝑃

∞∑︁
𝑡=1

𝛿𝑡𝑃P(𝜃
t
L |𝜃H)𝜂𝑡 · 𝜖𝑡 =: 𝐵,

where 𝜖𝑡 and 𝜖𝑡 are slack variables measuring the extent of violation of the upward incentive

constraint by the first-order optimum:

𝜖𝑡 := max
{
0,𝑈#

𝑡 −Δ𝜃𝑅(𝑘𝑒𝐻)−𝛿𝐴(𝛼𝐻−𝛼𝐿)𝑈#
1

}
, 𝜖𝑡 := max

{
0,𝑈#

𝑡 −Δ𝜃𝑅(𝑘𝑒𝐻)−𝛿𝐴(𝛼𝐻−𝛼𝐿)𝑈#
1

}
.

The general estimate 𝐵 makes it clear that there is no loss from the restriction to restart

contracts whenever the upward incentive constraints are satisfied for the first-order optimum,

i.e., 𝜖𝑡 = 𝜖𝑡 = 0 at all dates. And, even if some of these constraints are actually violated, the

loss from using the restart contracts is at most linear in 𝜖𝑡 and 𝜖𝑡 . In addition, the loss is

expected to be relatively small whenever the violation of upward incentive constraint is not

severe. Indeed, in the appendix we formally show that the Lagrange multipliers {𝜂𝑡 } and

{𝜂𝑡 } can themselves be bounded using the first-order conditions of Problem (R). This gives

an easily computable bound on the gap between the global optimum and restart optimum..

Here we sketch the construction.

We now provide two different ways to bound the gap 𝐵 as a function of primitives. First,

note that Corollaries 1 and 2 jointly imply that both sequences of utilities {𝑈#
𝑡 } and {𝑈#

𝑡 }
are increasing to the same limit, i.e., lim

𝑡→∞
𝑈

#
𝑡 = lim

𝑡→∞
𝑈

#
𝑡 . It follows that the slack sequences

{𝜖𝑡 } and {𝜖𝑡 } are increasing as well, again with the same limit, thus the gap can be bounded

as follows:

Π# − Π𝑅 ⩽ 𝐵 ⩽

( ∞∑︁
𝑡=1

𝛿𝑡−1𝑃 P(𝜃
t
L)𝜂𝑡 +

P(𝜃𝐻)
1 − 𝛿𝑃

∞∑︁
𝑡=1

𝛿𝑡𝑃P(𝜃
t
L |𝜃H)𝜂𝑡

)
· lim
𝑡→∞

𝜖𝑡 .

24Formally, the multipliers are defined as 𝛿𝑡−1
𝑃
P(𝜃t−1

L
)𝜂𝑡 and

P(𝜃𝐻 )
1−𝛿𝑃 𝛿

𝑡
𝑃
P(𝜃t

L
|𝜃H)𝜂𝑡 , which is merely a normal-

ization.
25Our approach of slacking upward incentive constraints and quantifying the loss associated from the exercise

has a flavor of Madarász and Prat [2017] where a robust approach to multidimensional screening entails the
principal giving up profits in order to relax global incentive constraints.
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We note that the term is in the brackets is the “aggregate” shadow price of the upward

incentive constraint. Since the right-hand of each upward incentive constraint is the same,

i.e., Δ𝜃𝑅(𝑘𝐻) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈1, the aggregate shadow price is determined in a way that the

coefficient in the Lagrangian in front of 𝑈1 is zero. In other words, the aggregate shadow

price matches exactly the marginal benefit of adjusting𝑈1, which turns out to be proportional

to the difference in the seeds at the restart and first-order optimums: 𝜌1 − 𝛾1 ⩾ 0. In the

appendix we show that

∞∑︁
𝑡=1

𝛿𝑡−1𝑃 P(𝜃
t
L)𝜂𝑡 +

P(𝜃𝐻)
1 − 𝛿𝑃

∞∑︁
𝑡=1

𝛿𝑡𝑃P(𝜃
t
L |𝜃H)𝜂𝑡 =

𝑃(𝜃𝐻)
1 − 𝛿𝑃

𝛿𝑃

𝛿𝐴

1 − 𝛼𝐻

1 − 𝛼𝐿

(𝜌1 − 𝛾1) ⩽

⩽
𝑃(𝜃𝐻)
1 − 𝛿𝑃

𝛿𝑃

𝛿𝐴

1 − 𝛼𝐻

𝛼𝐻 − 𝛼𝐿

(
𝜌1 − lim

𝑡→∞
𝜌𝑡

)
,

where the last inequality follows from the fact {𝛾𝑡 } obeys the same dynamics as {𝜌𝑡 }, i.e., it
is monotonically decreasing to lim

𝑡→∞
𝜌𝑡 , but is bounded from below by the floor (see Theorem

2). So, we conclude that the general bound 𝐵 satisfies the following inequality:

Π# − Π𝑅 ⩽ 𝐵 ⩽
𝑃(𝜃𝐻)
1 − 𝛿𝑃

𝛿𝑃

𝛿𝐴

1 − 𝛼𝐻

𝛼𝐻 − 𝛼𝐿

(
𝜌1 − lim

𝑡→∞
𝜌𝑡

)
=: 𝐵1

𝑎 . (5)

We now sketch the second approach to bound 𝐵 in terms of fundamentals. Using the fact

the optimal restart distortions {𝛾𝑡 } and {𝛾𝑡 } are bounded from below by the floor distortion

𝛾 (see Theorem 2), we show in the appendix that 𝜂𝑡+1, 𝜂𝑡+1 ⩽ (1 − 𝑏) (𝜌1 − lim𝑡→∞ 𝜌𝑡 ) for all
𝑡 ⩾ 2, and 𝜂1 = (𝜌1 − lim𝑡→∞ 𝜌𝑡 ) and 𝜂1 = 0. Substituting these into the expression for 𝐵, we

arrive at the second bound:

Π# − Π𝑅 ⩽ 𝐵 ⩽ P(𝜃𝐿) (𝜌 − 𝜌1)+ 𝜖1+

+ (1 − 𝑏)
(
𝜌1 − lim

𝑡→∞
𝜌𝑡

) ∞∑︁
𝑡=2

(𝛿𝑃 (1 − 𝛼𝐿))𝑡−1
(
P(𝜃𝐿)𝜖𝑡 +

P(𝜃𝐻)
1 − 𝛿𝑃

𝛿𝑃 (1 − 𝛼𝐻)𝜖𝑡
)
=: 𝐵2

𝑎 .

(6)

Combining both estimates we obtain that 𝐵 ⩽ min{𝐵1
𝑎, 𝐵

2
𝑎}, and the value of min{𝐵1

𝑎, 𝐵
2
𝑎}

is a known function of primitives. In the appendix we actually make the construction even

a bit tighter combining min{𝐵1
𝑎, 𝐵

2
𝑎} with the loss from using the best static contract. This

adjustment ensures that the relative loss stays bounded as well for all constellations of pa-

rameters:

𝐵𝑎 := min{𝐵1
𝑎, 𝐵

2
𝑎,Π

# − Π𝑆}, where Π𝑆 is the best static contract. (7)

Corollary 5. There exists two bounds, 𝐵𝑎 and 𝐵𝑟 , functions of primitives, such that Π★ −
Π𝑅 ⩽ 𝐵𝑎 and 1 − Π𝑅

Π★ ⩽ 𝐵𝑟 , where 𝐵𝑎 is defined by equations (5), (6) and (7); 𝐵𝑟 =
𝐵𝑎

Π# ; and

𝐵𝑎 = 𝐵𝑟 = 0 whenever the optimal contract is restart.
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Some limit cases can be quickly registered. For the equal discounting case 𝛿𝐴 = 𝛿𝑃, iid

case 𝛼𝐻 = 𝛼𝐿, and more generally when the relaxed problem approach is valid, the bound is

zero, showing that it is tight with the validity of the relaxed problem approach. Moreover,

it is easy to check that as Δ𝜃 → 0, as required by our sufficient condition for the invalidity

of the first-order approach (Corollary 4), both slack variables {𝜖𝑡 } and {𝜖𝑡 } converge to zero.

Thus, the additive bound converges to zero as well, and the restart optimum has no loss.

Figure 3 depicts the loss from using the optimal restart contract for a specific example. As

before we set 𝜃𝐿 = 1, 𝛿𝑃 = 0.8 and 𝑅(𝑘) = 2
√
𝑘. The unshaded region represents the validity

of the relaxed problem approach so the optimal restart contract is in fact the global optimum.

When the relaxed problem approach is not valid the analytical bound never exceeds 6 % and

the actual loss is never more than 4 %.26
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(a) actual loss
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(b) analytical loss

Figure 3: Percentage loss,
(
1 − Π𝑅

Π∗

)
∗ 100 where 𝛼𝐻 = 1 − 𝛼𝐿 = 𝛼 on the x-axis, 𝛿𝐴 on the y-axis;

𝛿𝑃 = 0.8, 𝑅(𝑘) = 2
√
𝑘, 𝜃𝐿 = 1 and Δ𝜃 = 0.1.

To summarize, when upward constraints (𝐼𝐶𝐿) bind at the optimum, the optimal contract

can take a complicated sequential form, which is hard to pin down in a closed form. This is

because both high and low type allocations are now distorted in a history dependent fashion.

To generate tractable predictions, we look instead at the optimal restart contract. Restart

contract fixes an allocation for the high type, and encodes all history dependence in the

allocation for the low type through the number of consecutive low shocks since the last high

one. This allows us to write down a simple contract that is approximately optimal in general

and exactly optimal when the relaxed approach is valid.

6 Simplicity through recursivity

We now define a notion of simplicity under which any restart contract is simple. In addition,

when the optimal contract here is not restart, i.e., the relaxed problem approach is not valid,

26By actual loss, we mean the exact numerical value of the loss associated with using the optimal restart
contract as opposed to the first-order optimal contract, and by analytical loss we mean the value of the
theoretical bound, 𝐵𝑟 , for which no optimization is required, it is simply a function of the fundamentals of
the model.
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then the state space required to encode it is quite rich, which makes the contract not simple.

The argument follows the recursive approach to contract design which is described in detail

in the appendix. An intuitive sketch follows.

Typically ”continuation utility” is the chosen state variable in dynamic games and con-

tracts. With asymmetric information, the number of state variable has to be enriched to

be the cardinality of the agent’s type space– one continuation utility for each type (see Fer-

nandes and Phelan [2000]). Here the problem can be simplified since 𝐼𝑅𝐿 always binds, i.e.,

𝑈 (𝜃𝑡−1, 𝜃𝐿) = 0. The recursive contract thus takes the expected payoff to the high type as

a state variable, and then optimizes over the allocation and expected continuation utility

to be given to the high type in the next period. That is, taking 𝑤 = 𝑈 (𝜃t−1, 𝜃𝐻), the op-

timal recursive contract pins down (k, z), where k = (𝑘𝐻 (𝑤), 𝑘𝐿 (𝑤)) is the allocation and

z = (𝑧𝐻 (𝑤), 𝑧𝐿 (𝑤)) is the expected continuation utility promised to the high type after either

high or low realizations. These are chosen to maximize the principal’s profit subject to the

recursive versions of incentive compatibility and individual rationality.

It is also well known that a recursive strategy (or contract) can be thought as an au-

tomaton. For our model, the automaton starts from some initial state, and then upon the

announcement of 𝜃𝐻 or 𝜃𝐿, it supplies capital and determines the expected continuation util-

ity to the high type agent, which in turn becomes the next state of the automaton, and so on.

In such a scenario, one potential notion of simplicity is due to Abreu and Rubinstein [1988];

it counts the number of states or equivalently the number of distinct allocations supplied by

the automaton ”machine”.27

Unfortunately, in our infinite horizon contracting setting, finite state machines are in-

tractable and also too restrictive for they do not even allow a contract to be time dependent.

A prospective alternative notion of simplicity is to let the set of allocations
{
𝑘 |∃𝜃t : 𝑘 = 𝑘𝑡 (𝜃t)

}
be countable. However, this notion of simplicity is too permissive, specifically, it allows the

cardinality of the set
{
𝑘 |∃𝜃t : 𝑘 = 𝑘𝑡 (𝜃t), 𝑡 ⩽ 𝑇

}
to grow exponentially with 𝑇 . We use an

intermediate notion that is richer than finiteness, but does not allow the state space to grow

too fast.

Definition 3. A contract ⟨k,U⟩ is said to be simple if there exists a number 𝐶 such that

for all 𝑇 ,
1

𝑇

��� {𝑘 |∃𝜃t : 𝑘 = 𝑘𝑡 (𝜃t), 𝑡 ⩽ 𝑇
} ��� ⩽ 𝐶.

This definition allows the space of allocations to grow linearly. To the best of our knowl-

edge, this is the first such notion of simplicity for dynamic contracts or mechanisms. When

a contract is not simple, it is termed complex. Clearly, any restart contract is simple. We

show that the optimal contract is simple if and only if the optimum is restart.

27This notion was first studied by Moore [1956], and it is often referred to as the Moore-machine. See also
Chatterjee and Sabourian [2009] for a survey on the study of simplicity/complexity in strategic settings.
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Theorem 3. Any restart contract is simple. Moreover, the optimal contract is simple iff it

is restart.

The proof of Theorem 3 involves first restating the contract design problem using the

recursive approach and then using its properties to determine the cardinality of the optimal

mechanism. The optimal recursive contract is given by ⟨𝑈★
1 (𝜃𝐻), k(·), z(·)⟩, where 𝑈★

1 (𝜃𝐻) is
the initial state, and k and z are mappings that take the current state as given and spit out

the allocation for this period and the value of the future state. In fact, the optimal sequential

contract ⟨k★,U★⟩ can be constructed from the optimal recursive contract ⟨𝑈★
1 (𝜃𝐻), k(·), z(·)⟩ in

the standard inductive fashion. In the appendix, we show that the optimal recursive allocation

k(·) is a monotone function, thus complexity of the optimum is completely determined by

richness of the state space used to encode it, which in turn is the expected continuation utility

promised to the high type.

Conceptually, the idea behind Theorem 3 is as follows. When the optimal contract is

restart, the cardinality of its support has the same ”size” as the flow of time, for it is com-

pletely captured by a sequence of allocations for consecutive low shocks since the last high

shock. When the optimal contract is not restart the state space needed to encode it has

to keep track of two (new) expected utilities in every period because now 𝑈★ is completely

history dependent. Thus, the contract space grows at a rate that is at least as large as 2𝑇 ,

which render it not simple or complex. This provides a natural normative criterion for why

optimal restart contracts might be easier to use than the optimal contracts when the relaxed

problem approach is violated.

7 Comparative Statics

We provide two types of comparative statics results: a folk theorem type of result when

the principal is infinitely patient and a comparison of patient versus impatient agent from

the perspective of the principal. Both results are formally stated in the appendix, here we

provided an intuitive exposition.

A standard folk theorem type of result has been reported in the dynamic mechanism design

literature– it states that sum of average payoffs across all parties converges to the average

surplus maximizing payoff as the discount factor converges to one (see Battaglini [2005] and

Athey and Segal [2013]). In Corollary 6, we show that as the principal becomes arbitrarily

patient the efficient surplus can be achieved if and only if the agent too becomes arbitrarily

patient.28 The familiar intuition carries through– for an arbitrarily patient principal, even

though the standard backloading force becomes almost free of cost, the intertemporal costs

28This result is also related to the folk theorem in repeated games with differential discounting (Sugaya
[2015]). In the folk theorem, difference between the rate of convergence of discount factor for the two players
matters for the equilibrium payoff set, but the ”best” achievable equilibrium does not depend on the rate,
only on the limit, which is true here as well for the commitment payoff.
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of incentive provision are forever positive as long as the agent’s discount factor is bounded

away from one.

The second comparative static is with respect to the principal’s profit as a function of the

agent’s discount factor. Assume 𝛿𝑃 to be fixed and less than 1. Does the principal favor an

impatient agent or patient agent, and what determines the ranking if there exists any? Due

to the complexity of competing forces, there is no easily expressible global comparative static

here. A theoretical result can be stated for the limit cases (iid and perfect persistence, see

Corollary 7), and numerical arguments explored for the intermediate ones.

Figure 4 plots principal’s profit in the first-order optimal contract and the optimal restart

contract. It presents a ”heat map” where each point in the box represents the expected profit

of the principal as a function of 𝛼𝐻 = 1−𝛼𝐿 = 𝛼 (on the 𝑥-axis) and 𝛿𝐴 (on the 𝑦-axis), where

darker shades mean higher values. The northwest and southeast corners of the parametric

spaces correspond to the limit cases– the principal prefers the patient agent (𝛿𝐴 = 𝛿𝑃) for

𝛼 sufficiently close to 1
2 , and she prefers the myopic agent (𝛿𝐴 = 0) for 𝛼 sufficiently close

to 1. In the intermediate range it is clear that the for each value of 𝛼 the principal’s profit

changes non-linearly as a function of 𝛿𝐴. For example at 𝛼 = 0.9, the principal prefers either

a completely myopic agent (𝛿𝐴 = 0) or completely forward looking one (𝛿𝐴 = 𝛿𝑃), but not

those with intermediate values of 𝛿𝐴.
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(a) First-order optimal contract
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(b) Optimal restart contract

Figure 4: Principal’s profit where 𝛼𝐻 = 1 − 𝛼𝐿 = 𝛼 on the x-axis, 𝛿𝐴 on the y-axis; 𝛿𝑃 = 0.8,
𝑅(𝑘) = 2

√
𝑘, 𝜃𝐿 = 1 and Δ𝜃 = 0.1.

The limit cases can be easily understood: When persistence is very high, the principal

has to pay a large information rent pointwise, for every history. Thus, in order to bring down

the net present value of this cost she prefers a myopic agent, even though this increases the

inter-temporal cost. On the other hand, with very low persistence, the pointwise value of

information rent is small. So, the principal prefers a forward looking agent because it erases

the inter temporal cost and whatever increase in the net present value of information rent

accrues, it can be extracted upfront since backloading is not constrained anymore by unequal

discounting.
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8 Final remarks

Many long-term contractual situations involve one party that is financially bigger or more

integrated in capital markets and the other endowed with private information. What kind of

contracts do we expect to observe in such environments? Pursuing such a framework, we ana-

lyzed a dynamic principal-agent model with three ingredients: persistent private information,

limited commitment and unequal discounting.

Their interaction produces a tradeoff for the principal: backloading agent’s payoffs as

much as possible to relax future incentive constraints, and front-loading them to minimize

the inter-temporal cost of incentive provision. This constant tussle between the two forces

produce a cyclical structure of allocative distortions that we term restart. The optimal

contract is completely characterized— sequentially for the relaxed problem and recursively

for the global optimum. When the relaxed problem approach is valid, the optimal contract is

restart, and when it is not valid, the optimum requires an exponentially growing state space

to encode all relevant history dependence. In the latter case, we characterize the optimal

restart contract that provides a simpler and approximately optimal alternative, where both

simplicity and approximate optimality are formally defined.

The nature of dynamic distortions poses a question to the literature on dynamic (Myerso-

nian) mechanism design— moving away from the standard equal discounting model changes

the structure of distortions in that they become pervasive and cyclical. With equal discount-

ing, Besanko [1985] and Battaglini [2005] show that ex post distortions steadily decrease to

zero in the long run for the AR(1) and two type Markov models respectively. Garrett, Pavan,

and Toikka [2018] show that distortions steadily decrease to zero on average for more general

types’ processes. Our results make clear that these predictions will not hold for unequal

discounting.

The modeling of financial constraints as differential interest rates through unequal dis-

counting and limited commitment as compared to limited liability constraints is a departure

from standard dynamic financial contracting literature. We term this as soft versus hard

financial constraints. In the absence of financial constraints the principal extracts maximal

possible information rent upfront. In the presence of hard financial constraints in the form of

limited liability, the principal binds the limited liability constraints for as long as information

rent to be paid out to the agent is recouped, and then eventually implements the efficient

contract (see Krishna et al. [2013] and Krasikov and Lamba [2021]). However, a permanent

difference in access to capital creates a permanent cost in generating the requisite room to

relax future incentive constraints, which culminates in cyclical and non-vanishing distortions.

The paper also discussed the connection of our modeling approach to a sizeable literature

in macroeconomics, public finance and political economy, which uses unequal discounting to

understand forces as disparate as debt dynamics, societal altruism for future generations and

evolution of capital taxes. In each cases, some mechanism resembling the restart contract
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emerges.

A limitation of our model is ‘permanency’ of the differential interest rates. A more

detailed analysis would allow the agent to save his way towards the market rate. There are

many plausible ways of introducing this added dimension to our model. One tractable way

could perhaps be to allow the discount factor of the agent to depend on the level of equity

of the ”firm structure”.29 So, as the agent’s share in total surplus increases, the interest rate

he faces also converges to the one faced by the principal. It would be a reduced form yet

an endogenous way of allowing for the effects of financial constraints to be mitigated in the

long-run. This seems to us a fruitful question for future research.

Finally, one can ask the question— what if the agent is more patient than the principal?

Though most of our applications fit the patient principal model, this is an interesting theo-

retical question in its own right. It turns out that the model as stated is then not compact;

the lack of an upper bound on transfers means that the principal will borrow or demand an

unbounded amount of money hoping to create a Ponzi scheme. Imposing an upper bound

rectifies the problem— the optimal allocation rule in the equal discounting case continues to

be the optimum for the model with 𝛿𝐴 > 𝛿𝑃, and transfers are uniquely pinned down through

the upper bound.

9 Appendix

9.1 Sequential characterization

9.1.1 Binding constraints

First, we establish the set of binding constraints in Problems (★), (#) and (𝑅): Lemma

1 shows that 𝐼𝑅𝐿 binds in all three problems and Lemma 2 proves that 𝐼𝐶𝐻 binds in the

relaxed problem. We use the terminology that a constraint is respected when it holds as a

weak inequality.

Lemma 1. Consider a mechanism ⟨k,U⟩ that respects 𝐼𝐶𝐻 , 𝐼𝑅𝐿 such that 𝑈𝑡 (𝜃t−1, 𝜃𝐿) > 0

for some history 𝜃t−1. Then, there exists another mechanism ⟨k, Ũ⟩ that satisfies 𝐼𝐶𝐻 , 𝐼𝑅𝐿,

𝐼𝑅𝐻 and yields a higher ex-ante profit. In addition, if ⟨k,U⟩ respects 𝐼𝐶𝐿, then ⟨k, Ũ⟩ can be

chosen to do this as well.

Proof. Define Ũ as 𝑈𝑡 (𝜃t−1, 𝜃𝐿) = 0 and 𝑈𝑡 (𝜃t−1, 𝜃𝐻) = 𝑈𝑡 (𝜃t−1, 𝜃𝐻) − 𝑈𝑡 (𝜃t−1, 𝜃𝐿). By con-

struction, the new mechanism satisfies 𝐼𝑅𝐿, moreover, its incentive compatibility constraints

are exactly the same as in the original mechanism. To see that 𝐼𝑅𝐻 holds, inductively expand

29In dynamic contracting models with agency frictions, the share of the principal can be regarded as the
debt and the share of the agent as equity, and the sum of two as the total value of the firm that is born out
of the contractual relationship between the two, see for example Clementi and Hopenhayn [2006].
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𝐼𝐶𝐻 along the persistent history of 𝜃𝐿’s:

𝑈𝑡 (𝜃t−1, 𝜃𝐻) ⩾
∞∑︁
𝑠=1

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑠−1 Δ𝜃𝑅(𝑘𝑡−1+𝑠 (𝜃t−1, 𝜃sL)) ⩾ 0,

where the last inequality follows from positivity of output.

Finally, note that Ũ ⩽ U and Ũ ≠ U, thus the altered mechanism is cheaper for the

principal. As a result, the ex-ante profit of ⟨k, Ũ⟩ is strictly higher than of ⟨k,U⟩. □

Lemma 2. Consider a mechanism ⟨k,U⟩ that respects 𝐼𝐶𝐻 , satisfies 𝐼𝑅𝐿 as an equality, but

𝑈𝑡 (𝜃t−1, 𝜃𝐻) >
∞∑︁
𝑠=1

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑠−1 Δ𝜃𝑅(𝑘𝑡−1+𝑠 (𝜃t−1, 𝜃sL)) for some history 𝜃t−1.

Then, there exists another mechanism ⟨k, Ũ⟩ that satisfies 𝐼𝐶𝐻 , 𝐼𝑅𝐿 and yields a strictly

higher ex-ante profit.

Proof. Define Ũ as𝑈𝑡 (𝜃t−1, 𝜃𝐿) = 0 and𝑈𝑡 (𝜃t−1, 𝜃𝐻) =
∞∑
𝑠=1

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑠−1 Δ𝜃𝑅(𝑘𝑡−1+𝑠 (𝜃t−1, 𝜃sL)).
The reader can verify that both 𝐼𝑅𝐿 and 𝐼𝐶𝐻 bind in the new mechanism.

As in Lemma 1, Ũ ⩽ U and Ũ ≠ U, thus the altered mechanism is cheaper for the

principal. It follows that the ex-ante profit of ⟨k, Ũ⟩ is strictly higher than of ⟨k,U⟩. □

9.1.2 Relaxed problem approach

We now complete the proof of Theorem 1 and Corollary 1.

Proof of Theorem 1. First, we will derive Equation 2 and two sequences of distortions {𝜌𝑡 }
and {𝜌𝑡 }, which are described in the statement of the theorem. Then, we will show how to

construct the optimal allocations.

Lemmas 1 and 2 jointly imply that it is without loss of generality to focus on mechanisms

in which both 𝐼𝐶𝐻 and 𝐼𝑅𝐿 bind at every history. So, consider a mechanism ⟨k,U⟩ satisfying
these two properties, that is for all 𝜃t−1 we have that 𝑈𝑡 (𝜃t−1, 𝜃𝐿) = 0 and

𝑈𝑡 (𝜃t−1, 𝜃𝐻) =
∞∑︁
𝑠=1

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑠−1 Δ𝜃𝑅(𝑘𝑡−1+𝑠 (𝜃t−1, 𝜃sL)).

We now use the set of binding constraints to rewrite the principal’s profit as a function

of allocations. First, we solve for the agent’s ex ante utility:

E [𝑈1(𝜃1)] =
∞∑︁
𝑡=1

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑡−1P(𝜃𝐻)Δ𝜃𝑅(𝑘𝑡 (𝜃tL)) =
∞∑︁
𝑡=1

(𝛿𝑃𝑏)𝑡−1
𝛼𝐿

1 − 𝛼𝐻

Δ𝜃𝑅(𝑘𝑡 (𝜃tL))P(𝜃
t
L).

where 𝑏 =
𝛿𝐴

𝛿𝑃

𝛼𝐻−𝛼𝐿

1−𝛼𝐿
is the propagator as described in Section 4.1.
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Next, we solve for the intertemporal cost of incentive provision:

𝐼 = (𝛿𝑃 − 𝛿𝐴)
∞∑︁
𝑡=2

𝛿𝑡−2𝑃 E
[
𝑈𝑡 (𝜃t)

]
= (𝛿𝑃 − 𝛿𝐴)

∑︁
𝜃t−1:𝑡⩾2

𝛿𝑡−2𝑃 P(𝜃
t−1, 𝜃𝐻)𝑈𝑡 (𝜃t−1, 𝜃𝐻) =

= (𝛿𝑃 − 𝛿𝐴)
∑︁

𝜃t−1:𝑡⩾2

∞∑︁
𝑠=1

𝛿𝑡−2𝑃 P(𝜃
t−1, 𝜃𝐻) (𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑠−1 Δ𝜃𝑅(𝑘𝑡−1+𝑠 (𝜃t−1, 𝜃sL)).

To make further progress, we expand the intertemporal cost of incentive provision separately

along the lowest history of 𝜃𝐿’s and in the restart phase where 𝜃t−1 contains at least one 𝜃𝐻 .

In the former case, we have

(𝛿𝑃 − 𝛿𝐴)
∞∑︁
𝑡=2

∞∑︁
𝑠=1

𝛿𝑡−2𝑃 P(𝜃
t−1
L , 𝜃𝐻) (𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑠−1 Δ𝜃𝑅(𝑘𝑡−1+𝑠 (𝜃t−1+sL )) =

= 𝑎𝐿

∞∑︁
𝑡=2

𝛿𝑡−1𝑃

(
𝑡−1∑︁
𝑠=1

𝑏𝑠−1

)
Δ𝜃𝑅(𝑘𝑡 (𝜃tL))P(𝜃

t
L),

where 𝑎𝐿 =
𝛿𝑃−𝛿𝐴

𝛿𝑃

𝛼𝐿

1−𝛼𝐿
is the adder, which was introduced in Section 4.1. The distortions

along the lowest history are then given by

𝜌𝑡 = 𝑏
𝑡−1P(𝜃𝐻)
P(𝜃𝐿)

+ 𝑎𝐿

(
𝑡−1∑︁
𝑠=1

𝑏𝑠−1

)
= 𝑏𝜌𝑡−1 + 𝑎𝐿 .

In the latter case, we have

(𝛿𝑃 − 𝛿𝐴)
∑︁

𝜃t−1:𝜃t−1≠𝜃t−1
L

,𝑡⩾2

∞∑︁
𝑠=1

𝛿𝑡−2𝑃 P(𝜃
t−1, 𝜃𝐻) (𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑠−1 Δ𝜃𝑅(𝑘𝑡−1+𝑠 (𝜃t−1, 𝜃sL)) =

= 𝑎𝐻

∑︁
𝜃t−1

∞∑︁
𝑠=1

𝛿𝑡−1+𝑠𝑃

(
𝑠∑︁

𝑟=1

𝑏𝑟−1

)
Δ𝜃𝑅(𝑘𝑡+𝑠 (𝜃t−1, 𝜃𝐻 , 𝜃sL))P(𝜃

t−1, 𝜃𝐻 , 𝜃
s
L),

where 𝑎𝐻 =
𝛿𝑃−𝛿𝐴

𝛿𝑃

𝛼𝐻

1−𝛼𝐻
is the see as defined in Section 4.1. The total distortion in the restart

phase can concisely be written as

𝜌𝑡 = 𝑏
𝑡−1𝑎𝐻 + 𝑎𝐿

(
𝑡−1∑︁
𝑠=1

𝑏𝑠−1

)
= 𝑏𝜌𝑡−1 + 𝑎𝐿 .

It remains only to find the optimal allocations. Substituting the expressions for the agent’s

ex ante utility and intertemporal cost of incentive provision into the seller’s profit, we obtain
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the following representation:

𝑆 −𝑈𝐴 − 𝐼 =
∑︁
𝜃t−1

𝛿𝑡−1𝑃 𝑠(𝜃𝐻 , 𝑘𝑡 (𝜃t−1, 𝜃𝐻))P(𝜃t−1, 𝜃𝐻) +
∞∑︁
𝑡=1

𝛿𝑡−1𝑃 𝑠

(
𝜃𝐿 − Δ𝜃𝜌𝑡 , 𝑘𝑡 (𝜃t−1L , 𝜃𝐿)

)
P(𝜃tL)+

+
∑︁
𝜃t−1

∞∑︁
𝑠=1

𝛿𝑡−1+𝑠𝑃 𝑠

(
𝜃𝐿 − Δ𝜃𝜌𝑡 , 𝑘𝑡+𝑠 (𝜃t−1, 𝜃𝐻 , 𝜃sL)

)
P(𝜃t−1, 𝜃𝐻 , 𝜃sL).

The reader can verify that pointwise optimization of the above objective yields the first-order

optimal allocation rule k# as described in Theorem 1. □

Proof of Corollary 1. Consider a function 𝑓 (𝑥) = 𝑏𝑥 + 𝑎𝐿 with 𝑏 =
𝛿𝐴

𝛿𝑃

𝛼𝐻−𝛼𝐿

1−𝛼𝐿
and 𝑎 𝑗 =

𝛿𝑃−𝛿𝐴

𝛿𝑃

𝛼𝑗

1−𝛼𝑗
for 𝑗 = 𝐻, 𝐿. By Theorem 1, the first-order optimum is characterized by two

sequences of distortions {𝜌𝑡 } and {𝜌𝑡 } that satisfy 𝜌𝑡+1 = 𝑓 (𝜌𝑡 ) and 𝜌𝑡+1 = 𝑓 (𝜌𝑡 ).
It is routine to verify that the function 𝑓 has a unique non-zero fixed point, that is 𝑎𝐿

1−𝑏 .

Moreover, 𝑓 (𝑥) ≷ 𝑥 whenever 𝑥 ≶ 𝑎𝐿

1−𝑏 . Thus, this fixed point is globally stable and both

sequences of distortions converge to it monotonically.

Parts (a) and (b) immediately follow from the following set of inequalities:

𝑎𝐿

1 − 𝑏 <
𝛼𝐿

1 − 𝛼𝐻

< 𝑎𝐻 .

Parts (c) and (d) follow from the definition of K𝐿 (𝑥), that is K𝐿 (𝑥) = (𝑅′)−1
(

1
𝜃𝐿−𝑥Δ𝜃

)
for

𝑥Δ𝜃 < 𝜃𝐿 and zero otherwise. □

9.1.3 Validity of the relaxed problem approach

Corollaries 2 and 3 provide the necessary and sufficient condition for the validity of the relaxed

problem approach. The former expresses expected utilities as a function of primitives, whereas

the latter identifies the tightest possible upward incentive constraint in the whole set of 𝐼𝐶𝐿.

Proofs of Corollaries 2 and 3. Corollary 2 follows simply from Equation (1).

As for Corollary 3, we showed in Section 4.3 that the upward incentive constraint for the

first-order optimal contract can be expressed as

max{𝑈#
𝑡 ,𝑈

#
𝑡 } ⩽ Δ𝜃𝑅(𝑘𝑒𝐻) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈#

1 ,

where the sequences of utilities {𝑈𝑡 } and {𝑈𝑡 } are defined in Corollary 2. By Corollary 1,

both sequences are increasing to the same value, i.e.,

lim
𝑡→∞

𝑈
#
𝑡 = lim

𝑡→∞
𝑈

#
𝑡 =

Δ𝜃 (𝑅 ◦ K𝐿)
(
lim
𝑡→∞

𝜌𝑡

)
1 − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)

.

It follows that the “tightest” incentive constraint is one at the “infinity”. □
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Next, we provide a proof of Corollary 4, which gives a condition for invalidity of the

first-order approach.

Proof of Corollary 4. Define a number 𝜖 to be the slack in the tightest possible upward

incentive constraint, that is

𝜖 := lim
𝑡→∞

𝑈
#
𝑡 (𝜃t−1L , 𝜃𝐻)/Δ𝜃 − 𝑅(𝑘𝑒𝐻) − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈#

2 (𝜃2𝐻)/Δ𝜃.

According to Corollary 3, the first-order optimum is globally optimal if and only if 𝜖 ⩽ 0.

It is useful to rewrite 𝜖 only in terms of the optimal distortions {𝜌𝑡 }, which are identified in

Theorem 1:

𝜖 =

∞∑︁
𝑡=1

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑡−1 (𝑅 ◦ K𝐿)
(
lim
𝑠→∞

𝜌𝑠

)
− 𝑅(𝑘𝑒𝐻) −

∞∑︁
𝑡=1

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑡 (𝑅 ◦ K𝐿) (𝜌𝑡 ) .

The reader can verify that the value of 𝜖 at Δ𝜃 = 0 is zero. Therefore, to prove the claim it

is sufficient to establish that 𝜖 is increasing in Δ𝜃 in a neighborhood of zero.

We now show that 𝜖 is increasing in Δ𝜃 for values that are sufficiently close to zero. First

of all, K𝐿 (𝑥), which is defined as a solution to max
𝑘⩾0

(𝜃𝐿 − 𝑥Δ𝜃)𝑅(𝑘) − 𝑘, is positive for Δ𝜃 that

is sufficiently close to zero, that is

1/(𝜃𝐿 − 𝑥Δ𝜃) = 𝑅′(K𝐿 (𝑥)).

By the implicit function theorem, K𝐿 is differentiable in Δ𝜃 at zero, moreover, its derivate is

proportional to the value of 𝑥, that is

𝜕K𝐿 (𝑥)
𝜕Δ𝜃

����
Δ𝜃=0

= 𝑥
1

(𝜃𝐿)2𝑅′′(𝑘𝑒
𝐿
) .

Note also that 𝑘𝑒
𝐻
= K𝐻 (0) = K𝐿 (−1), as a result 𝜖 is differentiable in Δ𝜃 at zero. Taking the

common factor outside the brackets, we can express the derivative of 𝜖 with respect to Δ𝜃 as

𝜕𝜖

𝜕Δ𝜃

����
Δ𝜃=0

=
1

(𝜃𝐿)2𝑅′′(𝑘𝑒
𝐿
)︸           ︷︷           ︸

<0

(
lim
𝑠→∞

𝜌𝑠 + 1 +
∞∑︁
𝑡=1

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑡
(
lim
𝑠→∞

𝜌𝑠 − 𝜌𝑡
))
.

The first term is negative due to strict concavity of 𝑅. We claim that under the condition of

corollary the second term is also strictly negative, thus 𝜕𝜖
𝜕Δ𝜃

����
Δ𝜃=0

> 0.

We now compute the second term of the above expression using the notations introduced

in Theorem 1, i.e., 𝑏 =
𝛿𝐴

𝛿𝑃

𝛼𝐻−𝛼𝐿

1−𝛼𝐿
and 𝑎 𝑗 =

(
1 − 𝛿𝐴

𝛿𝑃

)
𝛼𝑗

1−𝛼𝑗
for 𝑗 = 𝐻, 𝐿. Recall that the optimal

distortions are defined as 𝜌𝑡 = (1 − 𝑏𝑡−1) 𝑎𝐿

1−𝑏 + 𝑏𝑡−1𝑎𝐻 , therefore

lim
𝑠→∞

𝜌𝑠 − 𝜌𝑡 = 𝑏𝑡−1
( 𝑎𝐿

1 − 𝑏 − 𝑎𝐻
)
.
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Substituting these into the second term of the above expression, we arrive at

𝑎𝐿

1 − 𝑏 + 1 + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)
1 − 𝑏𝛿𝐴(𝛼𝐻 − 𝛼𝐿)

( 𝑎𝐿

1 − 𝑏 − 𝑎𝐻
)
=: 𝜁 .

To complete the proof, we need to show that 𝜁 < 0 under the assumption of Corollary 4.

To see it formally, multiply the left hand side by (1 − 𝛼𝐿) (1 − 𝑏𝛿𝐴(𝛼𝐻 − 𝛼𝐿)) and rearrange

to obtain that 𝜁 < 0 if and only if

𝛿𝐴

(
1 − 𝛿𝐴

𝛿𝑃

)
(1 − 𝛼𝐿) (𝛼𝐻 − 𝛼𝐿)

(
𝛼𝐻

1 − 𝛼𝐻

− 𝛼𝐿

1 − 𝛼𝐿

)
> (1 − 𝛼𝐿)

( 𝑎𝐿

1 − 𝑏 + 1 − 𝑏𝛿𝐴(𝛼𝐻 − 𝛼𝐿)
)
.

Note that 𝑏 < 𝛿𝐴/𝛿𝑃, thus 𝑎𝐿

1−𝑏 <
𝛼𝐿

1−𝛼𝐿
. It follows that

(1 − 𝛼𝐿)
( 𝑎𝐿

1 − 𝑏 + 1 − 𝑏𝛿𝐴(𝛼𝐻 − 𝛼𝐿)
)
< (1 − 𝛼𝐿)

( 𝑎𝐿

1 − 𝑏 + 1
)
< 1.

The assumption of Corollary 4 implies that

(1 − 𝛼𝐿) (𝛼𝐻 − 𝛼𝐿)
(
𝛼𝐻

1 − 𝛼𝐻

− 𝛼𝐿

1 − 𝛼𝐿

)
⩾ 1/𝛿𝐴

(
1 − 𝛿𝐴

𝛿𝑃

)−1
.

As a result, 𝜁 < 0, thus 𝜕𝜖
𝜕Δ𝜃

> 0

����
Δ𝜃=0

> 0. By continuity of 𝜖 , the first-order optimum is not

incentive compatible for Δ𝜃 > 0 that is close to zero. □

9.1.4 Restart optimum

We now characterize the restart optimum (Theorem 2) and derive its profit guarantee (Corol-

lary 5).

By Lemma 1, it is without loss of generality to focus on mechanisms such that 𝐼𝑅𝐿 binds

at every history, i.e., 𝑈𝑡 (𝜃t−1, 𝜃𝐿) = 0. We further restrict a contract space to be the set of

mechanisms satisfying 𝐼𝐶𝐻 as an equality at every history. Our restriction on the contract

space implies that the agent’s expected utilities are pinned down by the binding downward

incentive constraints, moreover, they also feature restarts. In other words, for any permissible

mechanism ⟨k,U⟩ there exist two sequences {𝑈𝑡 } and {𝑈𝑡 } such that for all 𝜃t−1, we have

𝑈𝑡 (𝜃t−1L , 𝜃𝐻) = 𝑈𝑡 , 𝑈𝑡+𝑠 (𝜃𝑡−1, 𝜃𝐻 , 𝜃s−1L , 𝜃𝐻) = 𝑈𝑠 .

These two sequences are determined as functions of the allocation rule by the binding down-

ward constraint:

𝑈𝑡 = Δ𝜃𝑅(𝑘𝑡 ) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈𝑡+1, 𝑈𝑡 = Δ𝜃𝑅(𝑘𝑡 ) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈𝑡+1.
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It follows that 𝐼𝐶𝐿 is equivalent to the following system of inequalities:

𝑈𝑡 ⩽ Δ𝜃𝑅(𝑘𝐻) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈1, 𝑈𝑡 ⩽ Δ𝜃𝑅(𝑘𝐻) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈1.

The former is the upward incentive constraint along the lowest history, the latter corresponds

to the restart phase.

It is convenient to rewrite the objective in terms of the aforementioned sequences of

allocations and utilities. First, we decompose the expected surplus into three terms: the high

type surplus, the surplus along the lowest history and the surplus in the restart phase:

𝑆 =

∞∑︁
𝑡=1

𝛿𝑡−1𝑃 E
[
𝑠
(
𝜃𝑡 |𝑘𝑡 (𝜃t)

) ]
=

=
P(𝜃𝐻)
1 − 𝛿𝑃

𝑠(𝜃𝐻 , 𝑘𝐻) +
∞∑︁
𝑡=1

𝛿𝑡−1𝑃 P(𝜃
t
L)𝑠(𝜃𝐿 , 𝑘𝑡 ) +

P(𝜃𝐻)
1 − 𝛿𝑃

∞∑︁
𝑡=1

𝛿𝑡𝑃P(𝜃
t
L |𝜃𝐻)𝑠(𝜃𝐿 , 𝑘𝑡 ).

The term P(𝜃𝐻 )
1−𝛿𝑃 is the discounted probability of 𝜃𝐻 , that is

∑∞
𝑡=1 𝛿

𝑡−1
𝑃
P(𝜃𝑡 = 𝜃𝐻). Next, note

that the agent’s expected payoff is simply 𝑈𝐴 = 𝑈1P(𝜃𝐻), whereas the intertemporal costs of

incentive provision can be factored as

𝐼 = (𝛿𝑃 − 𝛿𝐴)
∑︁

𝜃t−1:𝑡⩾2

𝛿𝑡−2𝑃 P(𝜃
t−1, 𝜃𝐻)𝑈𝑡 (𝜃t−1, 𝜃𝐻) =

= (𝛿𝑃 − 𝛿𝐴)
∞∑︁
𝑡=2

𝛿𝑡−2𝑃 P(𝜃
t−1
L , 𝜃𝐻)𝑈𝑡 + (𝛿𝑃 − 𝛿𝐴)

P(𝜃𝐻)
1 − 𝛿𝑃

∞∑︁
𝑡=1

𝛿𝑡−1𝑃 P(𝜃
t−1
L , 𝜃𝐻 |𝜃𝐻)𝑈𝑡 .

The former term captures the cost along the lowest history, and the latter reflects the cost

in the restart phase.

Taking all pieces together, Problem (𝑅) can be equivalently written as

max
𝑘𝐻 , {𝑘𝑡 }, {𝑘𝑡 }, {�̂�𝑡 }, {𝑈𝑡 }

𝑆 −𝑈𝐴 − 𝐼 subject to 𝑘𝐻 ⩾ 0, ∀𝑡 𝑘𝑡 , 𝑘𝑡 ,𝑈𝑡 ,𝑈𝑡 ⩾ 0, and

𝑈𝑡 = Δ𝜃𝑅(𝑘𝑡 ) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈𝑡+1 ⩽ Δ𝜃𝑅(𝑘𝐻) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈1,

𝑈𝑡 = Δ𝜃𝑅(𝑘𝑡 ) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈𝑡+1 ⩽ Δ𝜃𝑅(𝑘𝐻) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈1.

We are now in position to prove Theorem 2 and derive the bound described in Corollary 5

(see Figure 3b for a visualization).

Proof of Theorem 2. Problem (𝑅) is strictly concave and bounded, thus the restart optimum

can be characterized using the Lagrangian method. We first build the Lagrangian by attach-

ing a multiplier to each constraint. Specifically, the downward incentive constraints along the

lowest history are associated with dual variables 𝛿𝑡−1
𝑃
P(𝜃tL)𝛾𝑡 , whereas the upward incentive

constraints are associated with dual variables 𝛿𝑡−1
𝑃
P(𝜃tL)𝜂𝑡 . Similarly, in the restart phase mul-
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tipliers are P(𝜃𝐻 )
1−𝛿𝑃 𝛿

𝑡
𝑃
P(𝜃tL |𝜃H)𝛾𝑡 and

P(𝜃𝐻 )
1−𝛿𝑃 𝛿

𝑡
𝑃
P(𝜃tL |𝜃H)𝜂𝑡 for the downward and upward incentive

constraints, respectively. Then, the Lagrangian is as follows:

P(𝜃𝐻 )
1 − 𝛿𝑃

𝑠

(
𝜃𝐻 + Δ𝜃

(1 − 𝛿𝑃)𝜅
P(𝜃𝐻 )

, 𝑘𝐻

)
+

∞∑︁
𝑡=1

𝛿𝑡−1𝑃 𝑠(𝜃𝐿 − Δ𝜃𝛾𝑡 , 𝑘𝑡 )P(𝜃tL) +
∞∑︁
𝑡=1

𝛿𝑡𝑃𝑠(𝜃𝐿 − Δ𝜃𝛾𝑡 , 𝑘𝑡 )P(𝜃tL |𝜃H)+

+
(
− P(𝜃𝐻 ) + P(𝜃𝐿) (𝛾1 − 𝜂1)

)
𝑈1 +

P(𝜃𝐻 )
1 − 𝛿𝑃

(
−(𝛿𝑃 − 𝛿𝐴)𝛼𝐻 + 𝛿𝑃 (1 − 𝛼𝐻 ) (𝛾1 − 𝜂1) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)

(1 − 𝛿𝑃)𝜅
P(𝜃𝐻 )

)
𝑈1+

+
∞∑︁
𝑡=1

𝛿𝑡−1𝑃

(
− (𝛿𝑃 − 𝛿𝐴)𝛼𝐿 + 𝛿𝑃 (1 − 𝛼𝐿) (𝛾𝑡+1 − 𝜌𝑡+1) − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝛾𝑡

)
P(𝜃tL)𝑈𝑡+1+

+ P(𝜃𝐻 )
1 − 𝛿𝑃

∞∑︁
𝑡=1

𝛿𝑡−1𝑃

(
− (𝛿𝑃 − 𝛿𝐴)𝛼𝐿 + 𝛿𝑃 (1 − 𝛼𝐿) (𝛾𝑡+1 − 𝜌𝑡+1) − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝛾𝑡

)
P(𝜃tL |𝜃𝐻 )𝑈𝑡+1,

where the number 𝜅 measures of the total shadow price of 𝐼𝐶𝐿, and it is defined by

𝜅 :=
∞∑︁
𝑡=1

𝛿𝑡−1𝑃 P(𝜃
t
L)𝜂𝑡 +

P(𝜃𝐻)
1 − 𝛿𝑃

∞∑︁
𝑡=1

𝛿𝑡𝑃P(𝜃
t
L |𝜃H)𝜂𝑡 .

The reader can verify that the allocations are uniquely determined by the set of first-order

conditions as a function of the Lagrange multipliers:

𝑘𝑡 = K𝐿 (𝛾𝑡 ), 𝑘𝑡 = K𝐿 (𝛾𝑡 ) and 𝑘𝐻 = K𝐻

(
(1 − 𝛿𝑃)𝜅
P(𝜃𝐻)

)
⩾ 𝑘𝑒𝐻 .

In what follows we establish existence of the set of dual variables satisfying the properties

outlined in Theorem 2, moreover, we show that there is no duality gap. We shall use our

standard shorthand notations: 𝑏 =
𝛿𝐴

𝛿𝑃

𝛼𝐻−𝛼𝐿

1−𝛼𝐿
, 𝑎 𝑗 =

(
1 − 𝛿𝐴

𝛿𝑃

)
𝛼𝑗

1−𝛼𝑗
for 𝑗 = 𝐻, 𝐿. We will

also use two sequences of first-order optimal distortions {𝜌𝑡 } and {𝜌𝑡 } , which are defined in

Theorem 1 as 𝜌𝑡 = 𝑏𝜌𝑡−1 + 𝑎𝐿, 𝜌1 = P(𝜃𝐻 )
P(𝜃𝐿) and 𝜌𝑡 = 𝑏𝜌𝑡−1 + 𝑎𝐿, 𝜌1 = 𝑎𝐻 .

To begin, fix 𝛾 ⩾ 0 and 𝛾1 ∈
[
lim
𝑡→∞

𝜌𝑡 , 𝜌1

]
, where lim

𝑡→∞
𝜌𝑡 =

𝑎𝐿

1−𝑏 and 𝜌1 = 𝑎𝐻 , and define

{𝛾𝑡 }, {𝛾𝑡+1} by

𝛾𝑡 := max
{
𝛾, 𝑏𝑡−1𝜌1 + (1 − 𝑏𝑡−1) 𝑎𝐿

1 − 𝑏

}
, 𝛾𝑡+1 := max

{
𝛾, 𝑏𝑡−1𝛾1 + (1 − 𝑏𝑡−1) 𝑎𝐿

1 − 𝑏

}
.

Then, let 𝜂1 := 0, 𝜂1 := (𝛾1 − 𝜌1)+ and

𝜂𝑡+1 := 𝛾𝑡+1 − 𝑏𝛾𝑡 − 𝑎𝐿 , 𝜂𝑡+1 := 𝛾𝑡+1 − 𝑏𝛾𝑡 − 𝑎𝐿 .

The reader can verify that {𝜂𝑡 } and {𝜂𝑡 } are both non-negative and continuous in (𝛾, 𝛾1).
By construction, the coefficients in the Lagrangian in front of {𝑈𝑡 } and {𝑈𝑡+1} are identically
zero. In addition, the coefficient in front of 𝑈1 is proportional to

(𝑎𝐻 − 𝛾1)
𝛿𝐴

𝛿𝑃

1 − 𝛼𝐻

𝛼𝐻 − 𝛼𝐿

P(𝜃𝐻)
1 − 𝛿𝑃

− 𝜅.

Note that 𝜅 = 0 whenever 𝛾 is sufficiently small, moreover, it is strictly increasing in 𝛾 without
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bound. Therefore, for any 𝛾1 ∈
[
lim
𝑡→∞

𝜌𝑡 , 𝜌1

)
, there exists a unique value of 𝛾 which makes the

aforementioned coefficient equal to zero. For 𝛾1 = 𝜌1, any 𝛾 ⩽ min
{
lim
𝑡→∞

𝜌𝑡 , 𝜌1

}
= lim

𝑡→∞
𝜌𝑡 =

𝑎𝐿

1−𝑏
will do.

To conclude the proof, we need to show that there exists a value of 𝛾1 such that the

complimentary slackness is satisfied at all histories. The only non-trivial case is when the first-

order optimum is not incentive compatible, otherwise, 𝛾1 = 𝜌1 will work. Since the distortions

{𝛾𝑡 }, {𝛾𝑡 } are monotone and stay at the same value once upward incentive compatibility starts

to bind, it is sufficient to only verify the complimentary slackness at the “infinity”, that is

lim
𝑡→∞

𝑈𝑡 = Δ𝑅(𝑘𝐻) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈1.

The reader can check that the left hand side is larger than the right hand side for 𝛾1 = 𝜌1,

provided that the first-order optimum is not incentive compatible. On the other hand, the

left hand side is smaller than the right hand side for 𝛾1 = lim
𝑡→∞

𝜌𝑡 . To see it more formally, let

𝛾1 = lim
𝑡→∞

𝜌𝑡 . Then, we have 𝛾 > min
{
lim
𝑡→∞

𝜌𝑡 , 𝜌1

}
= lim

𝑡→∞
𝜌𝑡 . Taking two observations together,

by continuity, there exists a value of 𝛾1 ∈
(
lim
𝑡→∞

𝜌𝑡 , 𝜌1

)
for which the complimentary slackness

is satisfied. □

Proof of Corollary 5. Since the only difference between problems (𝑅) and (#) is the set of

upward incentive constraints, the difference in ex-ante profits of these two problems can be

assessed using the perturbation argument, which is discussed in details in Remark 1.

Consider the first-order optimum ⟨k#,U#⟩ and define the slack in the upward incentive

constraints as in Section 5.2, that is

𝜖𝑡 :=
(
𝑈

#
𝑡 − Δ𝑅(𝑘𝑒 (𝜃𝐻)) − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈#

1

)+
, 𝜖𝑡 :=

(
𝑈

#
𝑡 − Δ𝑅(𝑘𝑒 (𝜃𝐻)) − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑈#

1

)+
.

Then, Remark 1 implies the following bound on the profit gap Π★ − Π𝑅:

Π★ − Π𝑅 ⩽ Π# − Π𝑅 ⩽
∞∑︁
𝑡=1

𝛿𝑡−1𝑃 P(𝜃
t
L)𝜂𝑡 · 𝜖𝑡 +

P(𝜃𝐻)
1 − 𝛿𝑃

∞∑︁
𝑡=1

𝛿𝑡𝑃P(𝜃
t
L |𝜃H)𝜂𝑡 · 𝜖𝑡 =: 𝐵.

Our goal is to build an upper bound on the right hand side of this expression in terms of the

primitives. We shall use our standard shorthand notations: 𝑏 =
𝛿𝐴

𝛿𝑃

𝛼𝐻−𝛼𝐿

1−𝛼𝐿
, 𝑎𝑖 =

(
1 − 𝛿𝐴

𝛿𝑃

)
𝛼𝑗

1−𝛼𝑗

for 𝑗 = 𝐻, 𝐿. We will also use two sequences of first-order optimal distortions {𝜌𝑡 } and {𝜌𝑡 } ,
which are defined in Theorem 1 as 𝜌𝑡 = 𝑏𝜌𝑡−1 + 𝑎𝐿, 𝜌1 = P(𝜃𝐻 )

P(𝜃𝐿) and 𝜌𝑡 = 𝑏𝜌𝑡−1 + 𝑎𝐿, 𝜌1 = 𝑎𝐻 .
We now provide two different ways to measure the right hand side. Our first bound is

based on the fact that the slack variables are monotone, thus we can substitute the largest

slack variable into the right hand side. According to Corollary 1, the first-order optimal

distortion are increasing to the same limit, thus 𝜖𝑡 , 𝜖𝑡 ⩽ lim
𝑠→∞

𝜖𝑠 for all 𝑡. It follows that 𝐵
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satisfies the following inequality:

𝐵 ⩽

( ∞∑︁
𝑡=1

𝛿𝑡−1𝑃 P(𝜃
t
L)𝜂𝑡 +

P(𝜃𝐻)
1 − 𝛿𝑃

∞∑︁
𝑡=1

𝛿𝑡𝑃P(𝜃
t
L |𝜃H)𝜂𝑡

)
lim
𝑡→∞

𝜖𝑡 .

In the proof of Theorem 2, we showed that the term in the brackets is such that the coefficient

in the Lagrangian in front of 𝑈1 is zero. Using this result, we can rewrite the right-hand side

as follows:( ∞∑︁
𝑡=1

𝛿𝑡−1𝑃 P(𝜃
t
L)𝜂𝑡 +

P(𝜃𝐻)
1 − 𝛿𝑃

∞∑︁
𝑡=1

𝛿𝑡𝑃P(𝜃
t
L |𝜃H)𝜂𝑡

)
lim
𝑡→∞

𝜖𝑡 =
𝛿𝑃 (1 − 𝛼𝐻)
𝛿𝐴(𝛼𝐻 − 𝛼𝐿)

P(𝜃𝐻)
1 − 𝛿𝑃

(
𝛾1 − lim

𝑡→∞
𝜌𝑡

)
lim
𝑡→∞

𝜖𝑡 .

Finally, as was shown in Theorem 2, we have that 𝛾1 ⩽ 𝜌1, thus the following estimate:

Π# − Π𝑅 ⩽ 𝐵 ⩽
𝛿𝑃 (1 − 𝛼𝐻)
𝛿𝐴(𝛼𝐻 − 𝛼𝐿)

P(𝜃𝐻)
1 − 𝛿𝑃

(
𝜌1 − lim

𝑡→∞
𝜌𝑡

)
lim
𝑡→∞

𝜖𝑡 =: 𝐵
1
𝑎 .

Our second estimate directly bounds each dual variable. Using the construction used in

the proof of Theorem 2, the reader can verify that 𝛾 ⩽ 𝛾1, thus 𝛾𝑡+1 − 𝑎𝐿 − 𝑏𝛾𝑡 = 𝜂𝑡+1 ⩽

𝛾(1 − 𝑏) − 𝑎𝐿 ⩽ (1 − 𝑏)
(
𝜌1 − lim

𝑡→∞
𝜌𝑡

)
. Similarly, we have 𝜂𝑡+1 ⩽ (1 − 𝑏)

(
𝜌1 − lim

𝑡→∞
𝜌𝑡

)
. At the

initial date, 𝜂1 = 0 and 𝜂1 ⩽ (𝜌 − 𝜌1)+. Combining all pieces together, we obtain the second

upper bound 𝐵2
𝑎 on the profit gap:

Π# − Π𝑅 ⩽ P(𝜃𝐿) (𝜌 − 𝜌1)+ 𝜖1+

+ (1 − 𝑏)
(
𝜌1 − lim

𝑡→∞
𝜌𝑡

) ∞∑︁
𝑡=2

(𝛿𝑃 (1 − 𝛼𝐿))𝑡−1
(
P(𝜃𝐿)𝜖𝑡 +

P(𝜃𝐻)
1 − 𝛿𝑃

𝛿𝑃 (1 − 𝛼𝐻)𝜖𝑡
)
=: 𝐵2

𝑎 .

We now construct an upper bound on the relative profit loss. To make sure it does not

explode, we also compute the loss from using the optimal static contract, which specifies

a history independent allocation to 𝜃𝐿. The optimal static contract supplies the efficient

quantity to the high type and 𝑘𝑆
𝐿
:= 𝐾𝐿 (𝑥) to the low type where

𝑥 :=
1 − 𝛿𝐴

1 − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)
P(𝜃𝐻)
P(𝜃𝐿)

.

Denote the profit from using this static contract by Π𝑆, which resembles the expression for

Π#, that is

Π𝑆 :=
P(𝜃𝐻)
1 − 𝛿𝑃

𝑠(𝜃𝐻 , 𝑘𝑒𝐻) +
∞∑︁
𝑡=1

𝛿𝑡−1𝑃 P(𝜃
t
L)𝑠(𝜃𝐿 − Δ𝜌𝑡 , 𝑘

𝑆
𝐿) +

P(𝜃𝐻)
1 − 𝛿𝑃

∞∑︁
𝑡=1

𝛿𝑡𝑃P(𝜃
t
L |𝜃𝐻)𝑠(𝜃𝐿 − Δ𝜌𝑡 , 𝑘

𝑆
𝐿).

Then, we have Π# − Π𝑅 ≤ Π# − Π𝑆.
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So, we arrive at the following analytical bounds:

Π∗ − Π𝑅 ⩽ min{𝐵1
𝑎, 𝐵

2
𝑎,Π

# − Π𝑆} =: 𝐵𝑎 and 1 − Π𝑅

Π∗ ⩽ 𝐵𝑎/Π# =: 𝐵𝑟 .

The former is absolute, whereas the latter is relative.

□

9.2 Recursive characterization

It is well known that in order to recursify a dynamic contracting sequence problem where the

agent’s types follow an 𝑁-state Markov chain, the state variable of promised utility has to

be 𝑁-dimensional (Fernandes and Phelan [2000]). In our model, it is easy to show that 𝐼𝑅𝐿

will always bind for the optimal contract, hence, 𝑈★(𝜃t−1, 𝜃𝐿) = 0 at all histories. Thus, even

though the agent’s types follow a two state Markov process, a one dimensional state variable,

viz. 𝑈 (𝜃t−1, 𝜃𝐻) = 𝑤 ∈ R+, suffices to encode all the required history dependence.

The following recursive formulation is equivalent to the sequence problem described in

(★). From the second period onwards, for an expected promised utility of 𝑤 to the high type

and last period type 𝑗 , define the objective as follows:

(RP) 𝑆 𝑗 (𝑤) = max
(k,z) ∈R4+

𝛼 𝑗

(
𝑠(𝑘𝐻 , 𝜃𝐻) − (𝛿𝑃 − 𝛿𝐴)𝛼𝐻 𝑧𝐻 + 𝛿𝑃𝑆𝐻 (𝑧𝐻)

)
+

+ (1 − 𝛼 𝑗)
(
𝑠(𝑘𝐿 , 𝜃𝐿) − (𝛿𝑃 − 𝛿𝐴)𝛼𝐿𝑧𝐿 + 𝛿𝑃𝑆𝐿 (𝑧𝐿)

)
subject to

𝑤 ≥ Δ𝜃𝑅(𝑘𝐿) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑧𝐿 ,

𝑤 ≤ Δ𝜃𝑅(𝑘𝐻) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑧𝐻 .

The objective is to maximize the surplus, 𝑆 𝑗 (𝑤), when expected utility promised to the

agent is fixed at 𝑤 for the high type and 0 for the low type, or 𝛼 𝑗𝑤 + (1−𝛼 𝑗)0 in expectation.

There are four choice variables: capital advances k = (𝑘𝐻 , 𝑘𝐿) and expected continuation

utilities z = (𝑧𝐻 , 𝑧𝐿); note that 𝑧𝑖 represents the continuation utility of the high productivity

type next period if the current type is 𝜃𝑖. The term (𝛿𝑃 − 𝛿𝐴)𝛼𝑖𝑧𝑖 captures the intertemporal

cost of incentive provision incurred by the principal in providing the continuation value of

𝑧𝑖. The two constraints are the downward and upward incentive constraints, 𝐼𝐶𝐻 and 𝐼𝐶𝐿,

respectively. The reader can verify that these simply re-write the constraint from Section 2.2,

with an additional substitution 𝑈★(𝜃t−1, 𝜃𝐿) = 0 since 𝐼𝑅𝐿 binds at the optimum. Finally,

note that the participation constraint 𝐼𝑅𝐻 is subsumed in the recursive domain.

At date 𝑡 = 1, the problem is different for two reasons: the belief equals the prior and

contract has not yet been initialized. To initialize the contract, 𝑤 = 𝑈 (𝜃𝐻) −𝑈 (𝜃𝐿) ⩾ 0 must
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be chosen. The problem reads as follows:

(⋄) Π★ = max
(𝑤,z,k) ∈R5+

−𝜇𝐻𝑤 + 𝜇𝐻
[
𝑠(𝑘𝐻 , 𝜃𝐻) − (𝛿𝑃 − 𝛿𝐴)𝛼𝐻 𝑧𝐻 + 𝛿𝑃𝑆𝐻 (𝑧𝐻)

]
+

+ 𝜇𝐿
[
𝑠(𝑘𝐿 , 𝜃𝐿) − (𝛿𝑃 − 𝛿𝐴)𝛼𝐿𝑧𝐿 + 𝛿𝑃𝑆𝐿 (𝑧𝐿)

]
subject to

𝑤 ≥ Δ𝜃𝑅(𝑘𝐿) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑧𝐿 ,

𝑤 ≤ Δ𝜃𝑅(𝑘𝐻) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑧𝐻 .

Denote the optimal recursive contract by ⟨𝑤★, k(·), z(·)⟩ where (k(𝑤), z(𝑤)) solves (RP) for

the given promise 𝑤 ≥ 0 and (𝑤★, k(𝑤★), z(𝑤★)) solves (⋄).30 In the appendix we present

the complete characterization of the optimal recursive contract. In what follows we use this

recursive formulation to define a notion of simplicity for dynamic contracts.

In this section we study the recursive problem introduced in the main text, and then

use it to prove the result on simplicity. In what follows we first completely characterize the

solutions to the problem jointly defined by (RP) and (⋄).

9.2.1 Preliminary results

Let 𝑊 be the largest set of promised utilities 𝑤 ∈ R such that there exists an incentive

compatible and individually rational contract which delivers 𝑈1(𝜃𝐻) = 𝑤 and 𝑈1(𝜃𝐿) = 0.

The set 𝑊 is a familiar recursive domain, which was introduced in Spear and Srivastava

[1987]. In our setting the recursive domain has a very simple structure as shown in the

following lemma.

Lemma 3 (Recursive domain). 𝑊 = R+.

Proof. First of all, every 𝑤 ∈ 𝑊 must be such that 𝑤 ⩾ 0 by 𝐼𝑅𝐻 . On the other hand, any

𝑤 ⩾ 0 can be implemented, for example, the following mechanism ⟨k,U⟩ will do: 𝑈1(𝜃1) =

𝑤, 𝑘1(𝜃𝐻) = 𝑅−1 (
𝑤
Δ𝜃

)
and 𝑘𝑡 (𝜃t) = 𝑈𝑡 (𝜃t) = 0 for all 𝜃t ≠ 𝜃𝐻 . □

Using Lemma 3, we can express the recursive problem as (RP) from the second period

onwards, and as (⋄) in the first period, explicitly stated in Section 9.2. The reader can

verify that the sequential problem and its recursive counterpart admit the same solution.

To formally show equivalence between the sequential and recursive formulations, we need to

introduce auxiliary notations.

A policy correspondence 𝑤 ↦→ (K(𝑤),Z(𝑤)) specifies a set of optimal solutions in (RP)
for every 𝑤 ∈ R+. We say that a mechanism ⟨k,U⟩ is generated from the policy corre-

spondence (K(·),Z(·)) if 𝑘𝑡+1(𝜃 𝑗 , 𝜃t−1, 𝜃𝑖) ∈ K𝑖 (𝑈𝑡+1(𝜃 𝑗 , 𝜃t−1, 𝜃𝐻)) and 𝑈𝑡+2(𝜃 𝑗 , 𝜃t−1, 𝜃𝑖 , 𝜃𝐻) ∈
Z𝑖 (𝑈𝑡+1(𝜃 𝑗 , 𝜃t−1, 𝜃𝐻)) for 𝑖, 𝑗 = 𝐻, 𝐿 and for all 𝜃t−1.

The next claim formally connects the sequential and recursive formulations.

30As in the sequential first-order optimal contract, the allocation and transfers are uniquely pinned down.
To be precise, we formally show in the appendix that k is unique and z is almost surely unique (Claim 3).
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Claim 1.

(a) There exists a unique continuous bounded function 𝑆 𝑗 (𝑤) satisfying the Bellman equa-

tion in (RP).

(b) The policy correspondence (K(·),Z(·)) is non-empty, compact-valued and upper hemi-

continuous.

(c) A contract ⟨k,U⟩ is optimal if and only if it is generated from the policy correspondence

(K(·),Z(·)), and ⟨(𝑈1(𝜃𝐻), (𝑘1(𝜃𝐻), 𝑘1(𝜃𝐿)), (𝑈2(𝜃𝐻 , 𝜃𝐻),𝑈2(𝜃𝐿 , 𝜃𝐻))⟩ solves Problem

(⋄).

(d) The value of problems (★) and (⋄) coincide.

Proof. The result follows from Exercises 9.4, 9.5 in Stokey et al. [1989]. □

In the rest of the section we outline several standard properties of the value function

(Claim 2), establish uniqueness of transfers (Claim 3) and prove Propositions 2, 3.

Claim 2 (Properties of the value function).

(a) 𝑆 𝑗 is concave.

(b) 𝑆 𝑗 is continuously differentiable on R++.

(c) 𝑆 𝑗 is locally strictly concave at every 𝑤 satisfying 𝑆′
𝑗
(𝑤) > 0.

Proof.

Part (a). The argument is standard, we need to show that the Bellman operator, implicitly

defined in (RP), preserves concavity. Note that the constraints set is convex and 𝑠(𝜃, ·) is

concave. Then, the result follows from Theorem 3.1 and its Corollary 1 in Stokey et al. [1989].

Part (b). We established concavity of the value function using the standard argument.

As for differentiability, the standard argument of Benveniste and Scheinkman [1979] is not

applicable in our context, because it might not to be possible to change k keeping z constant.

We give a different argument that is close to Rincón-Zapatero and Santos [2009] in its spirit.

We shall use the fact that 𝑆 𝑗 is concave, thus it is subdifferentiable.

Take ⟨k★,U★⟩ which solves the sequence problem starting from the second period with

𝑈★
2 (𝜃 𝑗 , 𝜃𝐻) = 𝑤. Using the generalized first-order and envelope conditions for (RP), we

argue that there exists a finite time 𝑠 such that the value function is differentiable at

𝑈★
𝑠+1(𝜃 𝑗 , 𝜃s−1L , 𝜃𝐻). Then, the value function turns out to be differentiable at the original

point, 𝑤.

Before we show differentiability, we shall validate that the first-order conditions are suf-

ficient to characterize the solution. In particular, we show that the Slater’s condition holds,

which is sufficient to guarantee that the first-order approach with Lagrange multipliers in 𝑙1

is valid in the sequence problem, because of concavity and boundedness (see Morand and
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Reffett [2015]). We claim that for any 𝑤 > 0, there exists a feasible point such that the con-

straint map is uniformly bounded away from 0. The argument is constructive: since 𝑤 > 0,

there exist two numbers 𝑘𝐻 > 𝑘𝐿 > 0 satisfying

Δ𝜃

1 − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)
𝑅(𝑘𝐿) < 𝑤 <

Δ𝜃

1 − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)
𝑅(𝑘𝐻).

Then, define a contract ⟨k,U⟩ as 𝑘𝑡+1(𝜃 𝑗 , 𝜃t−1, 𝜃𝐻) = 𝑘𝐻 , 𝑘𝑡+1(𝜃 𝑗 , 𝜃t−1, 𝜃𝐿) = 𝑘𝐿 and𝑈𝑡+1(𝜃 𝑗 , 𝜃t−1, 𝜃𝐻) =
𝑤.

We are now in a position to show that 𝑆 𝑗 is continuously differentiable. Recall that

⟨k★,U★⟩ is the solution to the sequence problem at 𝑡 = 2 with 𝑈★
2 (𝜃 𝑗 , 𝜃𝐻) = 𝑤. The reader can

verify that the capital supplied to 𝜃𝐻 can be distorted only upwards, thus 𝑘★
𝑡+1(𝜃 𝑗 , 𝜃t−1, 𝜃𝐻) >

0 is uniquely defined at all histories by strict concavity of the objective. In addition, if

𝑘★
𝑡+1(𝜃 𝑗 , 𝜃t−1, 𝜃𝐿) > 0, then it is unique by strict concavity of the objective.

Next, consider the recursive problem (RP), its solution exists and coincides with one

found above. Since 𝑆 𝑗 is concave, its superdifferential at 𝑤 > 0 is well-defined and equals to

𝜕𝑆 𝑗 (𝑤) = [𝑆+
𝑗
(𝑤), 𝑆−

𝑗
(𝑤)], and at 𝑤 = 0 it is 𝑆+

𝑗
(0) where a plus/minus denotes a right/left

subderivative. The goal is to establish that the right and left subderivatives coincide.

Let 𝛼 𝑗𝜌𝐻 and (1−𝛼 𝑗)𝜌𝐿 be Lagrange multipliers for the upward and downward incentive

constraints, respectively. And, 𝜌 𝑗 (𝑤) be some Lagrange multiplier supporting the solution

, whereas 𝜌−
𝑗
(𝑤)/𝜌+

𝑗
(𝑤) be the highest/smallest such Lagrange multiplier. Finally, denote

by (k(𝑤), z(𝑤)) some point in the optimal correspondence. The first-order conditions with

respect to k are 𝑘𝑖 (𝑤) = K𝑖 (𝜌𝑖 (𝑤)) for 𝑖 = 𝐻, 𝐿. By the above argument, 𝐾𝐻 (𝑤) is a singleton

and 𝜌+
𝐻
(𝑤) = 𝜌−

𝐻
(𝑤) = 𝜌𝐻 (𝑤) for every 𝑤. In addition, if 𝑘𝐿 (𝑤) > 0, then 𝐾𝐿 (𝑤) is a

singleton and 𝜌+
𝐿
(𝑤) = 𝜌−

𝐿
(𝑤) = 𝜌𝐿 (𝑤). So, for 𝑤 > 0, there might be multiple multipliers

only if 𝜌−
𝐿
(𝑤) ⩾ 𝜃𝐿/Δ𝜃 > 0. It follows that the downward incentive constraint must bind, and

we have that 𝑧𝐿 (𝑤) = 𝑤
𝛿𝐴 (𝛼𝐻−𝛼𝐿) > 𝑤 > 0 is uniquely defined.

Then, the envelope theorem reads 𝑆−
𝑗
(𝑤)−𝑆+

𝑗
(𝑤) = (1−𝛼 𝑗) (𝜌−𝐿 (𝑤)−𝜌+𝐿 (𝑤)). It is immediate

that 𝑆 𝑗 is differentiable at 𝑤 if and only if 𝜌−
𝐿
(𝑤) = 𝜌+

𝐿
(𝑤). The first-order condition with

respect to 𝑧𝐿 when 𝑧𝐿 (𝑤) > 0 reads as follows:

𝛿𝑃𝑆
−
𝐿 (𝑧𝐿 (𝑤)) ⩾ 𝛼𝐿 (𝛿𝑃 − 𝛿𝐴) + (𝛼𝐻 − 𝛼𝐿)𝛿𝐴𝜌𝐿 (𝑤) ⩾ 𝛿𝑃𝑆+𝐿 (𝑧𝐿 (𝑤)).

If 𝜌𝐿 (𝑧𝐿 (𝑤)) is unique, then 𝜌𝐿 (𝑤) is so and 𝑆 𝑗 is differentiable at 𝑤. Now, define recursively

𝑧𝑠
𝐿
= 𝑧𝐿 (𝑧𝑠−1𝐿

) with 𝑧0
𝐿
= 𝑤 > 0 for some selection from 𝑍𝐿. There are two potential cases,

namely 𝜌𝐿 (𝑧𝑠𝐿) is unique for some 𝑠 or it is not for all 𝑠. In the former case, 𝑆 𝑗 is differentiable

at 𝑤 by our previous argument. In the latter case, 𝑧𝑠
𝐿
= 𝑤

𝛿𝑠
𝐴
(𝛼𝐻−𝛼𝐿)𝑠 → ∞ as 𝑠 → ∞ which is

impossible, because any solution must be in 𝑙∞. To complete the proof, note that continuous

differentiability of 𝑆 𝑗 is implied by differentiability and concavity.

Part (c). The proof is by contradiction. Suppose that 𝑆′
𝑗
(𝑤) = 𝑆′

𝑗
(𝑤+𝜖) > 0 for some 𝑤, 𝜖 >
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0. Consider ⟨k★,U★⟩ and ⟨k𝜀 ,U𝜀⟩ solving the sequence problem at 𝑡 = 2 with 𝑈★
2 (𝜃 𝑗 , 𝜃𝐻) = 𝑤

and 𝑈 𝜀
2 (𝜃 𝑗 , 𝜃𝐻) = 𝑤 + 𝜀, respectively. Since 𝑠(𝜃, ·) is strictly concave, it must be that k★ = k𝜀.

Otherwise, we would have 𝑆′
𝑗
(𝑤) < 𝑆′

𝑗
(𝑤 + 𝜀).

Now, since 𝑆′
𝑗
(𝑤) = 𝑆′

𝑗
(𝑤 + 𝜀) > 0, the envelope theorem implies that the downward

incentive constraint binds in both cases. By the first-order and envelope conditions, see

Equations 8, 9 and 10 below, it will continue to bind along the sequence of 𝜃𝐿’s. Then, we

have

𝑤 = Δ𝜃

∞∑︁
𝑠=1

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝑠−1𝑅(𝑘★𝑡+𝑠−1(𝜃t−2, 𝜃 𝑗 , 𝜃𝑠𝐿)) = 𝑤 + 𝜀.

The last assertion is a clear contradiction. By the same argument, 𝑆′
𝑗
(𝑤 − 𝜖) > 𝑆′

𝑗
(𝑤). □

We now derive the set of optimality conditions that is useful for our characterization of the

optimal contract. Let (1−𝛼 𝑗)𝜌𝐻 and 𝛼 𝑗𝜌𝐿 be Lagrange multipliers attached to the constraints

in (RP). And, let P(𝜃𝐻)𝜌𝐻 and P(𝜃𝐿)𝜌𝐿 be Lagrange multipliers attached to the constraints

in (⋄). We denote by (k(·), z(·)) a selection from the optimal correspondence and by 𝜌(·) the
corresponding Lagrange multipliers. So, the first-order conditions are 𝑘𝑖 (𝑤) = K𝑖 (𝜌𝑖 (𝑤)) for
𝑖 = 𝐻, 𝐿 and

𝑆′𝐻
(
𝑧𝐻 (𝑤)

)
− 𝛼𝐻

𝛿𝑃 − 𝛿𝐴
𝛿𝑃

+ (𝛼𝐻 − 𝛼𝐿)
𝛿𝐴

𝛿𝑃
𝜌𝐻 (𝑤)


= 0 if 𝑧𝐻 (𝑤) > 0,

⩽ 0 if 𝑧𝐻 (𝑤) = 0,
(8)

𝑆′𝐿
(
𝑧𝐿 (𝑤)

)
− 𝛼𝐿

𝛿𝑃 − 𝛿𝐴
𝛿𝑃

− (𝛼𝐻 − 𝛼𝐿)
𝛿𝐴

𝛿𝑃
𝜌𝐿 (𝑤)


= 0 if 𝑧𝐿 (𝑤) > 0,

⩽ 0 if 𝑧𝐿 (𝑤) = 0.
(9)

In addition, the Envelope theorem gives:

𝑆′𝑗 (𝑤) = (1 − 𝛼 𝑗)𝜌𝐿 (𝑤) − 𝛼 𝑗𝜌𝐻 (𝑤) for 𝑗 = 𝐻, 𝐿. (10)

Finally, we argue that the Lagrange multipliers are unique. Let ⟨k★,U★⟩ be the solution

to the sequence problem at 𝑡 = 2 with 𝑈★
2 (𝜃 𝑗 , 𝜃𝐻) = 𝑤. Since the capital supplied to 𝜃𝐻 can

be distorted only upwards, thus 𝑘★𝑡 (𝜃t−2, 𝜃 𝑗 , 𝜃𝐻) > 0 is uniquely defined by strict concavity

of the objective. It follows from Claim 1 that 𝜌𝐻 (𝑤) = K−1
𝐻

(
𝑘★𝑡 (𝜃t−2, 𝜃 𝑗 , 𝜃𝐻)

)
, and 𝜌𝐻 is

continuous, because ⟨k★,U★⟩ changes continuously with 𝑤. It remains to select 𝜌𝐿 (𝑤) to

satisfy the envelope condition.

9.2.2 Optimal recursive contract

In this section we exposit the properties of the optimal recursive contract, ⟨𝑤∗, k(·), z(·)⟩
where 𝑤∗ = 𝑈★

1 (𝜃𝐻) and (k(𝑤), z(𝑤)) solves (RP) for each 𝑤 ⩾ 0; (𝑤∗, k(𝑤∗), z(𝑤∗)) solves
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(⋄).31 We start with registering the monotonicity of allocation with respect to expected utility

given to the high type.

For the optimal recursive contract, allocations for the high and low productivity shocks are

increasing in the state variable, 𝑤. Intuitively speaking, the downward incentive constraint

binds only for low values of 𝑤. In this case, the allocation and promised expected utility upon

announcing the low type (that is, 𝑘𝐿 and 𝛼𝐿𝑧𝐿) must be distorted downwards to prevent the

high type from misreporting. Indeed, there exists a critical value 𝑤∗
𝐿
so that the downward

incentive constraint binds only for 𝑤 ⩽ 𝑤∗
𝐿
. The incentive problem is more severe for low

values of 𝑤, there exists another threshold 𝑤𝑜
𝑘
below which the contract does not supply 𝜃𝐿.

By the similar reasoning, the allocation and promised expected utility upon announcing

the high type (that is, 𝑘𝐻 and 𝛼𝐻 𝑧𝐻) must be distorted upwards if the upward incentive

constraint binds. And, there exists a critical value 𝑤∗
𝐻

such that this constraint binds if and

only if 𝑤 ⩾ 𝑤∗
𝐻
. Figure 5a plots the optimal allocation as the function of agent’s expected

utility.

For the latter references, it is useful to construct these threshold formally. By Part (c)

of Claim 2, there exists a unique number 𝑧𝑒
𝐿
such that 𝑧𝐿 (𝑤) = 𝑧𝑒

𝐿
whenever the downward

incentive constraint is slack. By the same token, there exists a unique number 𝑧𝑒
𝐻

such that

𝑧𝐻 (𝑤) = 𝑧𝑒
𝐻

whenever the upward incentive constraint is slack. The reader can verify that

each number satisfies 𝑧𝑒
𝑗
> 0 and 𝑆′

𝑗
(𝑧𝑒

𝑗
) = 𝛼 𝑗

𝛿𝑃−𝛿𝐴

𝛿𝑃
or 𝑧 𝑗 = 0 and 𝑆′

𝑗
(0) ⩽ 𝛼 𝑗

𝛿𝑃−𝛿𝐴

𝛿𝑃
. Then, the

critical thresholds are defined as 𝑤∗
𝑗
:= Δ𝜃𝑅(𝑘𝑒 (𝜃 𝑗)) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑧𝑒𝑗 > 0.

We then have the following simple result.

Proposition 2. The allocation in the optimal recursive contract satisfies the following:

(a) ∃𝑤∗
𝐻

such that 𝑘𝐻 (𝑤) = 𝑘𝑒
𝐻

if and only if 𝑤 ⩽ 𝑤∗
𝐻
, 𝑘𝐻 (·) is strictly increasing on

[𝑤∗
𝐻
,∞).

(b) ∃𝑤𝑜
𝑘
, 𝑤∗

𝐿
such that 𝑘𝐿 (𝑤) = 0 if and only if 𝑤 ⩽ 𝑤𝑜

𝑘
, 𝑘𝐿 (𝑤) = 𝑘𝑒𝐿 if and only if 𝑤 ⩾ 𝑤∗

𝐿
,

𝑘𝐿 (·) is strictly increasing on [𝑤𝑜
𝑘
, 𝑤∗

𝐿
].

Proof of Proposition 2. It suffices to characterize the optimal distortions 𝜌𝐿 (·) and 𝜌𝐻 (·),
because their properties translate into k(·) by the first-order condition 𝑘𝑖 (𝑤) = K𝑖 (𝜌(𝑤)) for
𝑖 = 𝐻, 𝐿.

Part (a). If the upward incentive constraint is slack, then, by definition, 𝑘𝐻 (𝑤) = 𝑘𝑒
𝐻
and

𝑧𝐻 = 𝑧𝑒
𝐻
. Since this choice is feasible if and only if 𝑤 ⩾ 𝑤∗

𝐻
, the result for 𝜌𝐻 (·) follows.

We now establish monotonicity of 𝜌𝐻 (·). Take 𝑤′ > 𝑤 ⩾ 𝑤∗
𝐻

and suppose, by contra-

diction, that 𝜌𝐻 (𝑤) ⩾ 𝜌𝐻 (𝑤′). Concavity and the first-order conditions jointly imply that

𝑧𝐻 (𝑤) ⩾ 𝑧𝐻 (𝑤′) which contradicts to

Δ𝜃 (𝑅◦K𝐻) (𝜌𝐻 (𝑤))+𝛿𝐴(𝛼𝐻−𝛼𝐿)𝑧𝐻 (𝑤) = 𝑤 < 𝑤′ = Δ𝜃 (𝑅◦K𝐻) (𝜌𝐻 (𝑤′))+𝛿𝐴(𝛼𝐻−𝛼𝐿)𝑧𝐻 (𝑤′).
31As in the sequential first-order optimal contract, the allocation and transfers are uniquely pinned down.

To be precise, we formally show in the appendix that only 𝑧𝐻 could fail to be unique at a single point. The
details are provided in Claim 3.
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Part (b). By the same argument as in Part (a), 𝜌𝐿 (·) is strictly decreasing on [0, 𝑤∗
𝐿
],

and it is zero afterwards. To complete the proof, let 𝑤𝑜
𝑘
:= max{𝑤 ∈ 𝑊 : 𝑘𝐿 (𝑤) = 0}. The

threshold 𝑤𝑜
𝑘
is well-defined, because 𝑘𝐿 (·) is a continuous function (Claim 1) and 𝑘𝐿 = 0 is

feasible for all values of 𝑤.

□

We now turn our attention to z(·). Our first result establishes uniqueness of transfers,

the second completely characterizes the shape of optimal policy.

Claim 3. 𝑍𝐿 (·) is single-valued. Moreover, if 𝑤∗
𝐿
⩾ 𝑤∗

𝐻
, then 𝑍𝐻 (·) is single-valued, other-

wise, there exists a number �̄� such that 𝑍𝐻 (𝑤) is a singleton if and only if 𝑤 ≠ �̄�.

Proof. Uniqueness of 𝑧𝐿 (·) is directly implied by the last part of Claim 2. In contrast, 𝑧𝐻 (·)
might fail to be unique. We now establish the second part of the claim.

First, suppose that 𝑤∗
𝐿
⩾ 𝑤∗

𝐻
. Then, 𝑆′

𝑗
(𝑤) = (1−𝛼 𝑗)𝜌𝐿 (𝑤)−𝛼 𝑗𝜌𝐻 (𝑤) is strictly decreasing

on R+. As a result, 𝑍𝐻 (·) is single-valued by strict concavity of 𝑆 𝑗 .

Second, suppose that 𝑤∗
𝐿
< 𝑤∗

𝐻
, then the envelope conditions (Equation 10) imply that

𝑆′
𝑗
(𝑤) > 0 on [0, 𝑤∗

𝐿
], 𝑆′

𝑗
(𝑤) < 0 on [𝑤∗

𝐻
, +∞) and 𝑆′

𝑗
(𝑤) = 0 for any 𝑤 ∈ [𝑤∗

𝐿
, 𝑤∗

𝐻
]. Define �̄�

by

(𝛼𝐻 − 𝛼𝐿)𝛿𝐴𝜌𝐻 (�̄�) = 𝛼𝐻 (𝛿𝑃 − 𝛿𝐴).

The reader can verify that such value exists, and it is unique, due to of monotonicity of

𝜌𝐻 (·), which was established in Proposition 2. As a result, 𝑍𝐻 (·) is single-valued on [0, �̄�)
by the last part of Claim 2, and 𝑍𝐻 (�̄�) = [𝑤∗

𝐿
, 𝑤∗

𝐻
] by construction. To see that 𝑍𝐻 (·) is

single-valued on (�̄�, +∞), note that 𝑤 = Δ𝜃 (𝑅 ◦ K𝐻) (𝜌𝐻 (𝑤)) + 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)𝑧𝐻 (𝑤) whenever
𝜌𝐻 (𝑤) > 0. Since 𝜌𝐻 (𝑤) > 0 for any 𝑤 > �̄�, 𝑧𝐻 (𝑤) could be uniquely identified from the

upward incentive constraint. □

To sum up, 𝑧𝐻 (𝑤) is almost surely unique, it is not unique only when 𝑤∗
𝐿
< 𝑤∗

𝐻
and

𝑤 = �̄�. In what follows, 𝑧𝐻 (·) stand for an arbitrary selection from 𝑍𝐻 (·).
Now, the dynamics of promised expected utility are described in Figure 5. In each case 𝑧𝐻

and 𝑧𝐿 are plotted as functions of 𝑤. The 45° line partitions the quadrant into regions where

expected utility increases or decreases in the next period. 𝑤∗
𝐻

and 𝑤∗
𝐿
are the thresholds

as defined above. And the bold dots represent some points in the support of the invariant

distribution of the optimal contract. For example, in all the figures the point 𝑧𝑒
𝐻

at which

𝑧𝐻 (·) intersects the 45° line constitutes a bold dot. Each time a high shock arrives it is

possible for the optimal contract to stay at the same expected utility, and it surely does so if

the upward constraint is not binding.

Consider first the situation depicted in Figure 5b. Here 𝑧𝑒
𝐻

= 0. Since both curves

lie below the 45°, the recursive contract continually shrinks in expected value. It quickly

converges to, most often immediately, to the bold point at zero which implies an expected

utility of zero and a complete shutdown of the low productivity type. In Figures 5c and 5d,

44



𝑘

𝑤

𝑘𝐻
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𝐻

𝑤𝑜
𝑘
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𝑧
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(d) never restart

Figure 5: Optimal recursive contract

we portray the optimal restart contract which does not feature shutdowns. The realization

of a high shock pushes the expected utility towards 𝑧𝑒
𝐻
. On the realization of a low shock,

promised expected utility above 𝑤 𝑓 , which is the largest fixed point of 𝑧𝐿 (·), contracts, and
below 𝑤 𝑓 it expands. The key condition that characterizes Figure 5c is 𝑤 𝑓 ≤ 𝑤∗

𝐻
. It implies

that the upward incentive constraint does not bind in the interval [𝑧𝑒
𝐻
, 𝑤 𝑓 ], and the invariant

distribution of the promised expected utility rests therein.32 In contrast, Figure 5d exposits

the case with perennial binding of the upward incentive constraint which is captured by the

condition 𝑤 𝑓 > 𝑤∗
𝐻
.

Finally, the only missing piece is initialization- where does the optimal recursive contract

start? We show that the recursive contract is initialized at a unique point 𝑤★ ∈ [𝑧𝑒
𝐻
, 𝑤 𝑓 ].

Therefore, at the inception the downward incentive constraint always binds, while the upward

constraint may or may not bind. The next proposition summarizes the evolution of expected

utility in the optimal recursive contract.

Proposition 3. The expected utility of the agent in the optimal recursive contract satisfies

the following:

(a) ∃𝑤𝑜
𝑧 , 𝑧

𝑒
𝐿
such that 𝑧𝐿 (𝑤) = 0 if and only if 𝑤 ⩽ 𝑤𝑜

𝑧 , 𝑧𝐿 (𝑤) = 𝑧𝑒𝐿 if and only if 𝑤 ⩾ 𝑤∗
𝐿
,

32To find the support, we repeatedly apply 𝑧𝐿 (·) to 𝑧𝑒𝐻 , the bold points in Figure 5c depict this set.
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𝑧𝐿 (·) is strictly increasing on [𝑤𝑜
𝑧 , 𝑤

∗
𝐿
].

(b) ∃𝑧𝑒
𝐻
such that 𝑧𝐻 (𝑤) = 𝑧𝑒

𝐻
if and only if 𝑤 ⩽ 𝑤∗

𝐻
, 𝑧𝐻 (·) is strictly increasing on [𝑤∗

𝐻
,∞).

(c) 𝑧𝐿 (·) has a unique globally stable fixed point 𝑤 𝑓 ∈ [𝑧𝑒
𝐻
, 𝑧∗

𝐿
], and 𝑧𝐻 has a unique fixed

point 𝑧𝑒
𝐻

which is positive if and only if 𝜃𝐿 >
𝑎𝐿

1−𝑏Δ𝜃.

(d) The thresholds satisfy 𝑧𝑒
𝐻
⩽ 𝑤 𝑓 ⩽ 𝑧𝑒

𝐿
< 𝑤∗

𝐿
, 𝑧𝑒

𝐻
< 𝑤∗

𝐻
, and 𝑧𝑒

𝐿
≠ 𝑧𝑒

𝐻
if and only if 𝑧𝑒

𝐿
> 0.

(e) ∃𝑤∗ ∈ [𝑧𝑒
𝐻
, 𝑤 𝑓 ] such that the optimal contract starts at this point, and it always stays

within [𝑧𝑒
𝐻
, 𝑤 𝑓 ].

Proof of Proposition 3.

Parts (a) and (b). First, we show that 𝑧𝑒
𝐿
< 𝑤∗

𝐿
. The claim is vacuously true whenever

𝑧𝑒
𝐿
= 0, because 𝑤∗

𝐿
= Δ𝜃𝑅(𝑘𝑒

𝐿
) > 0. Consider the alternative case with 𝑧𝑒

𝐿
> 0. Then, by

definition, 𝑤∗
𝐿
satisfies 𝑆′

𝑗
(𝑤∗

𝐿
) = −𝛼 𝑗𝜌𝐻 (𝑤∗

𝐿
) ⩽ 0, and 𝑧𝑒

𝐿
satisfies 𝑆′

𝑗
(𝑧𝑒

𝐿
) > 0. Strict concavity

of 𝑆 𝑗 , which was shown in Part (c) of Claim 2, implies 𝑤∗
𝐿
> 𝑧𝑒

𝐿
.

Next, we establish that 𝑧𝑒
𝐻
< 𝑤∗

𝐻
. By contradiction, suppose that 𝑤∗

𝐻
⩽ 𝑧𝑒

𝐻
, equivalently

we have
Δ𝜃

1 − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)
𝑅(𝑘𝑒 (𝜃𝐻)) ⩽ 𝑧𝑒𝐻 .

We claim that 𝑧𝑒
𝐻
⩽ 𝑧𝑒

𝐿
, therefore 𝑧𝑒

𝐻
< 𝑤∗

𝐿
that implies

𝑧𝑒𝐻 <
Δ𝜃

1 − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)
𝑅(𝑘𝑒 (𝜃𝐿))

contradicting to the inequality above as 𝑘𝑒
𝐿
< 𝑘𝑒

𝐻
. To complete the argument, we need to

establish that 𝑧𝑒
𝐻
⩽ 𝑧𝑒

𝐿
. This clearly follows from Equation 10:

𝑆′𝐻 (𝑤)/𝛼𝐻 − 𝑆′𝐿 (𝑤)/𝛼𝐿 =
𝛼𝐿 − 𝛼𝐻

𝛼𝐻𝛼𝐿

𝜌𝐿 (𝑤) ⩽ 0,

In fact, 𝑧𝑒
𝐿
≠ 𝑧𝑒

𝐻
if and only if 𝑆′

𝐿
(0) > 𝛼𝐿

𝛿𝑃−𝛿𝐴

𝛿𝑃
.

We showed above that 𝑧𝑒
𝑗
∈ [0, 𝑤∗

𝑗
) for 𝑗 = 𝐻, 𝐿. Then, monotonicity of 𝜌𝐿 (·) and 𝜌𝐻 (·),

as shown in Proposition 2, combined with Equations 8 and 9 translates into monotonicity of

both 𝑧𝐿 (·) and 𝑧𝐻 (·). Finally, we set 𝑤𝑜
𝑧 := max{𝑤 ⩾ 0 : 𝑧𝐿 (𝑤) = 0} that is uniquely-defined,

because 𝑧𝐿 (·) is a continuous function with 𝑧𝐿 (0) = 0.

Part (c). We begin with fixed points of 𝑍𝐻 (·). In the previous part, we showed that

𝑧𝑒
𝐻
< 𝑤∗

𝐻
that implies that 𝑧𝑒

𝐻
is a fixed point of 𝑍𝐻 (·). We now show that there are no other

fixed points. By contradiction, suppose that there exists another fixed point 𝑤 ≠ 𝑧𝑒
𝐻
> 0, it

must be the case that 𝜌𝐻 (𝑤) > 0. The following equation is necessary for existence of such

𝑤 ∈ Z𝐻 (𝑤) > 0 with 𝜌𝐻 (𝑤) > 0:

𝑤 =
Δ𝜃

1 − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)
(
𝑅 ◦ K𝐻

) (
𝜌𝐻 (𝑤)

)
>

Δ𝜃

1 − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)
𝑅(𝑘𝑒𝐻)
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To obtain a contradiction, combine Equations 8 and 10:

(1 − 𝛼𝐻)𝛿𝑃𝜌𝐿 (𝑤) = 𝛼𝐻 (𝛿𝑃 − 𝛿𝐴) +
(
𝛼𝐻𝛿𝑃 − (𝛼𝐻 − 𝛼𝐿)𝛿𝐴

)
𝜌𝐻 (𝑤) > 0.

Since 𝜌𝐿 (𝑤) > 0, the downward constraint binds this period, and it will keep binding a

sequence of 𝜃𝐿’s. Formally, let 𝑧𝑠
𝐿
(𝑤) be a result of 𝑠 successive applications of 𝑧𝐿 (·) to 𝑤,

that is 𝑧𝑠
𝐿
(𝑤) := 𝑧𝐿

(
𝑧𝑠−1
𝐿

(𝑤)
)
with 𝑧0

𝐿
(𝑤) = 𝑤. By Equation 9, 𝜌(𝑧𝑠

𝐿
(𝑤)) > 0 for any 𝑠. Then,

iterating along this sequence, we arrive at the following equation:

𝑤 = Δ𝜃

∞∑︁
𝜏=0

(𝛿𝐴(𝛼𝐻 − 𝛼𝐿))𝜏
(
𝑅 ◦ K

) (
𝜌𝐿 (𝑧𝜏𝐿

(
𝑤)

) )
<

Δ𝜃

1 − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)
𝑅(𝑘𝑒𝐿).

which clearly contradicts the premise. As a result, 𝑧𝑒
𝐻

is the unique fixed point of 𝑍𝐻 (·).
Now, we turn our attention to fixed points of 𝑧𝐿 (·). Of course, 0 is always a fixed point,

and our goal is to identify a positive fixed point, that is 0 < 𝑤 = 𝑧𝐿 (𝑤). First of all,

𝑧𝐿 (𝑤) = 𝑧𝑒
𝐿
< 𝑤∗

𝐿
⩽ 𝑤 whenever 𝜌𝐿 (𝑤) = 0, therefore it must be the case that 𝑤 < 𝑧𝑒

𝐿
and

𝜌𝐿 (𝑤) > 0. The following equation is necessary for existence of a fixed point with 𝜌𝐿 (𝑤) > 0:

𝑤 =
Δ𝜃

1 − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)
(𝑅 ◦ K𝐿) (𝜌𝐿 (𝑤)).

The other necessary condition, due to the Equations 9 and 10, is that(
(1 − 𝛼𝐿)𝛿𝑃 − 𝛿𝐴(𝛼𝐻 − 𝛼𝐿)

)
𝜌𝐿 (𝑤) = 𝛼𝐿 (𝛿𝑃 − 𝛿𝐴) + 𝛼𝐿𝛿𝑃𝜌𝐻 (𝑤) > 0.

Moreover, the reader can verify that these two equations are jointly sufficient for 𝑤 to be a

positive fixed point of 𝑧𝐿 (·). By monotonicity of both 𝜌𝐿 and 𝜌𝐻 (shown in Proposition 2),

the equations have a root if and only if 𝜃𝐿 >
𝑎𝐿

1−𝑏Δ𝜃. And, if such a root exists, then it is

unique.

Let 𝑤 𝑓 be the largest fixed point, i.e., it is the root of the aforementioned equations for

𝜃𝐿 >
𝑎𝐿

1−𝑏Δ𝜃, and 𝑤 𝑓 = 0, otherwise. For 𝜃𝐿 >
𝑎𝐿

1−𝑏Δ𝜃, global stability follows from 𝑧𝐿 (·)
crossing the 45-degree line only once and from above, because 𝑤 𝑓 < 𝑧𝑒

𝐿
. For 𝜃𝐿/Δ𝜃 ⩽ 𝑎𝐿

1−𝑏 ,

global stability is trivial, because 0 is the unique fixed point.

Part (d). We have already established in Parts (a) and (b) that each 𝑧𝑒
𝑗
< 𝑤∗

𝑗
and

𝑧𝑒
𝐻
⩽ 𝑧𝑒

𝐿
. So, it remains to establish that 𝑧𝑒

𝐻
⩽ 𝑤 𝑓 . Of course, it is vacuously true whenever

𝑧𝑒
𝐻

= 0, thus it is without loss of generality, to assume that 𝑧𝑒
𝐻
> 0. By contradiction,

suppose that 𝑤 𝑓 < 𝑧𝑒
𝐻
. Since 𝜌𝐻 (·) is monotone and 𝑧𝑒

𝐻
⩽ 𝑤∗

𝐻
, we have 𝜌𝐻 (𝑤 𝑓 ) = 0 that

implies 𝜌𝐿 (𝑤 𝑓 ) =
𝑎𝐿

1−𝑏 . On the other hand, by monotonicity of 𝜌𝐿 (·), 𝑧𝑒𝐻 < 𝑤 𝑓 implies

𝜌𝐿 (𝑤 𝑓 ) > 𝜌𝐿 (𝑧𝑒𝐻) = 𝑎𝐻 . As a result, 𝑎𝐿

1−𝑏 > 𝑎𝐻 that is a clear contradiction. Conclude that

𝑧𝑒
𝐻
⩽ 𝑤 𝑓 .

Part (e). At the initial date, the first-order conditions with respect to z(·) coincide

with Equations 8 and 9. The extra first condition is P(𝜃𝐿)𝜌𝐿 (𝑤) − P(𝜃𝐻)𝜌𝐻 (𝑤) = (⩽)P(𝜃𝐻)
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whenever 𝑤 > (=)0. Then, existence and uniqueness directly follows from monotonicity of

both 𝜌𝐿 (·) and 𝜌𝐻 , see proof of Proposition 2.

We now show 𝑤∗ ∈ [𝑧𝑒
𝐻
, 𝑤 𝑓 ]. By contradiction, suppose that 𝑤∗ < 𝑧𝑒

𝐻
. Since 𝑃 (𝜃𝐻 )

𝑃 (𝜃𝐿) ⩽ 𝑎𝐻 ,

we must have 𝜌𝐻 (𝑤∗) > 0. Recall that 𝜌𝐻 (·) is non-decreasing, thus 𝜌𝐻 (𝑧𝑒
𝐻
) ⩾ 𝜌𝐻 (𝑤∗) > 0

that is a contradiction. Conclude that 𝑤∗ ⩾ 𝑧𝑒
𝐻
.

Again, by contradiction, suppose that 𝑤∗ > 𝑤 𝑓 . Since 𝑃 (𝜃𝐻 )
𝑃 (𝜃𝐿) ⩾

𝑎𝐿

1−𝑏 , we must have

𝜌𝐻 (𝑤 𝑓 ) > 0. By monotonicity of 𝜌𝐻 (·) and 𝜌𝐿 (·), 𝜌𝐻 (𝑤∗) > 𝜌𝐻 (𝑤 𝑓 ) > 0 and 𝜌𝐿 (𝑤∗) ⩽
𝜌𝐿 (𝑤 𝑓 ) where

𝜌𝐿 (𝑤 𝑓 ) = 𝑎𝐿

1 − 𝑏

(
1 + 1

1 − 𝛿𝐴/𝛿𝑃
𝑝𝐻 (𝑤 𝑓 )

)
, 𝜌𝐿 (𝑤∗) = 𝑃(𝜃𝐻)

𝑃(𝜃𝐿)
(1 + 𝜌𝐻 (𝑤∗)) .

The reader can verify that these conditions cannot be satisfied simultaneously, as a result we

have 𝑤∗ ⩽ 𝑤 𝑓 . □

Propositions 2 and 3 precisely characterize the optimal contract. Starting at 𝑤∗, each

subsequent realization of the agent’s type determines the optimal allocation according to

Proposition 2 and the optimal expected utility for the next period, the state variable, accord-

ing to Proposition 3.

There is, of course, a one-to-one relationship between the optimal recursive contract, and

the sequential optimum. First of all, the downward incentive constraints always bind, and the

low type always gets the promised utility of zero. The high type allocation can be distorted

only upwards, whereas the low type allocation is always distorted downwards.

Moreover, the realization of each 𝜃𝐻 decreases the promised utility offered to the high

type in the next period which reduces distortion for the high type allocation, but increases a

distortion in the low type. It takes an endogenous number of consecutive 𝜃𝐻 for the upward

incentive constraint to stop binding. 𝜃𝐿 always increases the promised utility offered to the

high type in the next period which tightens the distortion for the high type allocation, but

relaxes distortions for the low type allocation. It takes an endogenous number of consecutive

𝜃𝐿 shocks for the upward incentive constraint to start binding.

9.2.3 Simplicity

Here the characterization of the optimal recursive contract to is used to establish Theorem

3.

Proof of Theorem 3. First of all, any restart contract is simple, because a number of possible

distinct allocations by time 𝑇 is at most 2𝑇 . Indeed, the set
{
𝑘 |∃𝜃t : 𝑘 = 𝑘𝑡 (𝜃t), 𝑡 ⩽ 𝑇

}
is a

union of {𝑘𝑡 }𝑇𝑡=1, {𝑘𝑡 }𝑇−1𝑡=1 and 𝑘𝐻 . As a result, if the optimum is restart, then it is simple.

We now show the converse. Suppose that the optimal contract is not restart. In term of

our recursive notations, this means that 𝑧𝐻 (𝑤 𝑓 ) ≠ 𝑧𝑒
𝐻
. According to Proposition 3, it must

be the case that there are no shutdowns, that is 𝑧𝑒
𝐻
> 0. Thus, the allocation supplied to the
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low type and the promised utility of the high type are both strictly positive. Since k(·) is

monotone, it suffices to show that the set of utilities promised to 𝜃𝐻 grows at an exponential

rate. Formally, we claim that there exists a number 𝐾 such that����� {𝑈 |∃𝜃t−1 : 𝑈 = 𝑈𝑡 (𝜃t−1, 𝜃𝐻), 𝑡 ⩽ 𝑇
} ����� ⩾ 𝐾2𝑇 .

First of all, note that 𝑧𝑒
𝐻
is reached after sufficiently many consecutive high shocks. Since

𝑧𝐻 (𝑤 𝑓 ) ≠ 𝑧𝑒
𝐻
, there exists a natural number 𝜏 such that 𝑧𝐻 (𝑧𝜏

𝐿
(𝑧𝑒

𝐻
)) ≠ 𝑧𝑒

𝐻
. Moreover,

Proposition 3 implies that for any 𝑤, 𝑤′ ∈ [𝑧𝑒
𝐻
, 𝑤 𝑓 ) with 𝑤 ≠ 𝑤′, we have that 𝑧𝐻 (𝑧𝜏

𝐿
(𝑤)) ≠

𝑧𝐻 (𝑧𝜏
𝐿
(𝑤′)) ≠ 𝑧𝑒

𝐻
. In other words, the number of states is doubled every 𝜏 periods. As a

result, the state space expands exponentially with the constant 𝐾 = 2−𝜏 . □

9.3 Comparative statics

Here we present two results which are intuitively sketched in Section 7.

Corollary 6. Let {(𝛿𝑛
𝑃
, 𝛿𝑛

𝐴
)} ∈ (0, 1)2 be a convergent sequence of discount factors such

that 𝛿𝑛
𝑃
⩾ 𝛿𝑛

𝐴
for all 𝑛. Let Π★,𝑛 be the profit at the optimal contract for (𝛿𝑛

𝑃
, 𝛿𝑛

𝐴
). Then,

(1 − 𝛿𝑛
𝑃
)Π★,𝑛 → 𝑠𝑒 if and only if 𝛿𝑛

𝐴
→ 1.

Proof. First of all, note that the optimal contract only depends on the agent’s relative pa-

tience 𝛿𝐴

𝛿𝑃
and absolute patience 𝛿𝐴. By the theorem of maximum, the optimal contract is a

continuous function of (𝛿𝐴, 𝛿𝑃) on 0 < 𝛿𝐴 ⩽ 𝛿𝑃 < 1.

Take the convergent sequence {(𝛿𝑛
𝐴
, 𝛿𝑛

𝑃
)} as described in the corollary. Suppose that

𝛿𝑛
𝐴
→ 1, then 𝛿𝑃𝑡 also converges to 1, because 𝛿𝑛

𝐴
⩽ 𝛿𝑛

𝑃
for all elements. It follows that

the optimal contract convergences to the first-order optimum, because the latter is always

incentive compatible for 𝛿𝐴 = 𝛿𝑃. Moreover, by Theorem 1, the first-order optimum exhibits

distortions only along the lowest history, that is 𝜌𝑡 = 0 at all dates. Next, as 𝛿𝑛
𝑃

→ 1,

the weight on the payoffs along the lowest history goes to zero. As a result, the principal’s

achieves the maximal surplus.

We now show that 𝛿𝑛
𝐴
→ 1 is necessary for the full surplus extraction. By construction,

the value of the first-order program Π#,𝑛 is an upper bound on Π★,𝑛. Since 𝛿𝑛
𝐴
⩽ 𝛿𝑛

𝑃
⩽ 1 for

all elements, the ratio
𝛿𝑛
𝐴

𝛿𝑛
𝑃

is also convergent. There are two cases two consider.

First, suppose that lim
𝑛→∞

𝛿𝑛
𝑃

= 1. Then, lim
𝑛→∞

𝛿𝑛
𝐴

𝛿𝑛
𝑃

< 1, therefore the first-order optimal

distortions are positive in the restart phase, i.e., 𝜌𝑡 > 0. It follows that the limit of (1−𝛿𝑛
𝑃
)Π#,𝑛

is well defined, and 𝑠𝑒 > lim
𝑛→∞

(1 − 𝛿𝑛
𝑃
)Π#,𝑛 ⩾ lim

𝑛→∞
(1 − 𝛿𝑛

𝑃
)Π#,𝑛.

Finally, suppose that lim
𝑛→∞

𝛿𝑛
𝑃
< 1. In this case the low type distortion in the first period

is positive, i.e., 𝜌1 > 0. As a result, the principal’s profit is strictly less than the surplus:

𝑠𝑒 > Π# ⩾ Π∗. □
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Corollary 7. Fix 𝛿𝑃 ∈ (0, 1). Consider a symmetric Markov chain with 𝛼𝐻 = 1 − 𝛼𝐿 = 𝛼.

The principal’s ex ante payoff in the first-order optimal, optimal and optimal restart contracts

varies with 𝛿𝐴 as follows:

(a) principal prefers the patient agent (𝛿𝐴 = 𝛿𝑃) for 𝛼 sufficiently close to 1
2 .

(b) principal prefers the myopic agent (𝛿𝐴 = 0) for 𝛼 sufficiently close to 1.

Proof. We first consider the first-order optimum. This contract is essentially static for 𝛼 = 1
2 ,

see Theorem 1: 𝜌𝑡 =
𝛿𝑃−𝛿𝐴

𝛿𝑃
for all 𝑡, 𝜌𝑡 =

𝛿𝑃−𝛿𝐴

𝛿𝑃
for all 𝑡 ⩾ 2. Importantly, 𝑈𝐴 is independent

of 𝛿𝐴. Since the surplus and the cost of incentive provision are both strictly increasing in

𝛿𝐴, 𝛿𝐴 = 𝛿𝑃 uniquely maximizes the principal’s profit. By continuity of the profit in the

first-order optimal contract with respect to 𝛼, 𝛿𝐴 = 𝛿𝑃 is still a maximizer for any 𝛼 in a

sufficiently small neighborhood of 1
2 .

If 𝛼 → 1, then 𝜌𝑡 =
P(𝜃𝐻 )
P(𝜃𝐿)

(
𝛿𝐴

𝛿𝑃

) 𝑡−1
for all 𝑡, thus the intertemporal cost of incentive

provision goes to zero. As a result, lim
𝛼→1

𝑈𝑃 = lim
𝛼→1

𝑈𝐴, and the limit is strictly increasing in

𝛿𝐴. By continuity, 𝛿𝐴 = 0 is a maximizer for any 𝛼 in a sufficiently small neighborhood of 1.

Recall that the first-order optimal contract is incentive compatible for either iid or con-

stant types, see Corollary 3. Therefore, the proposition is true for the optimum and the

restart optimum as well. □
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