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Abstract

We consider optimal joint nonlinear earnings taxation of couples. We use multi-dimensional
mechanism design techniques to study this problem and show that the first-order approach –
that restricts attention to only local incentive constraints – is valid for a broad set of primitives.
Optimal taxes are characterized by the solution to a certain second-order partial differential
equation. Using the Coarea Formula, we solve this equation for various conditional averages of
optimal tax rates and identify key forces that determine the optimal tax rates; show how these
rates depend on earnings of each spouse, correlation in spousal earnings, and redistributive
objectives of the planner; compare optimal rates for primary and secondary earners; identify
both the conditions under which simple tax systems are optimal and the sources of welfare
gains from more sophisticated taxes when those conditions are not satisfied. Optimal tax rates
for married individuals are increasing in correlation of spousal earnings but are lower than the
tax rates for single individuals, and the marginal rates for one spouse increase (decrease) in
the earnings of the other when both spouses have low (high) earnings.
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1 Introduction

A significant part of income taxes in developed countries is paid by households that consist of

several adult members. For example, in the U.S., over 70 percent of federal individual income

taxes are collected from married couples. Yet, the theory of optimal taxation of family income

is poorly understood. What economic forces determine the shape and magnitude of the optimal

joint earnings tax schedule? How should one member’s taxes depend on the earnings of the

other member? Is it ever optimal to tax each individual in a couple separately or to use total

family income as a base for earnings taxation?

In this paper, we take a step to answer these questions. We use the mechanism design

approach. The optimal tax problem can be equivalently cast as a problem of a fictitious

mechanism designer who chooses allocations for all households based on reports about their

productivities subject to the incentive compatibility constraints. Optimal taxes for married

households are characterized by the solution to a certain second-order non-linear partial differ-

ential equation. While there are no known techniques to solve this equation explicitly, we show

that this roadblock can be partially side-stepped using a mathematical result known as the

Coarea formula. It allows us to derive closed-form expressions for various conditional moments

that these taxes must satisfy. The Coarea formula shows that, in a very broad sense, optimal

taxes for married coples are determined by a trade-off between benefits from redistribution,

captured by Pareto weights, and deadweight costs of taxation, captured by elasticities of labor

supplies of the spouses and statistics summarizing the joint distribution of earnings of the

spouses.

We first develop our approach in the simplest or benchmark economy. All individuals in the

benchmark economy are ex-ante identical and have the same preferences, that for tractability

we assume to be quasi-linear with constant elasticity of labor supply. All individuals draw

their productivities from the same distribution. Before their productivity draws are realized,

they decide whether to stay single or go to the marriage market. Individuals on the marriage

market receive signals about their future productivity, form couples with other individuals on

the marriage market based on these signals, and agree to share their marital surplus equally.

After productivity draws are realized, married and single individuals work, pay taxes, and

consume. The social planner chooses taxes for single and married households to maximize

Pareto-weighted sum of expected utilities of individuals.

While simple, the benchmark economy allows us to focus on some key characteristics of

taxation. In our economy, single and married co-exist allowing us to compare optimal taxes

on one- and two-person households in the same setting. Our marriage formation process
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admits arbitrary correlation in earnings within couples, which is important since in the data

spousal earnings are positively but imperfectly correlated. The social planner only cares about

redistribution across individuals with different expected utilities and does not have any inherent

preference for or against marriage.

The benchmark economy allows us also to investigate an important technical question

in multi-dimensional taxation: whether the first-order approach (FOA) is valid when agents

characteristics are multi-dimensional. The FOA simplifies the mechanism design problem by

restricting attention to only local incentive constraints. The FOA has been the standard

technique to analyze uni-dimensional tax models since the seminal work of Mirrlees (1971)

but there has been a lingering suspicion that it might generically fail in higher dimensions.1

We derive necessary and sufficient conditions for validity of FOA for both single and married

households in our benchmark economy when matching on thew marriage market is random.

Comparison of these conditions reveals that conditions for validity of FOA for married couples

are less stringent for for single households, so that the FOA is more likely to hold in these

bi-dimensional settings.2

Using this insight, we analyze properties of optimal taxes for single and married households

under FOA. We derive closed-form expressions for the optimal tax distortions3 for single and

married households. The optimal tax distortions for single persons are exactly the same as in

the classical Mirrleesian economy and can be represented by the famous ABC formula due to

Diamond (1998). The Coarea formula gives closed-form expressions for a rich set of conditional

moments that characterize optimal taxes for married couples.

One of the key insight of the analysis is that the planner, even though she does not have an

inherent stance for or against marriage, sets taxes that encourage couples formation. Optimal

1For example, in their classic study of the optimal taxation of couples, Kleven et al. (2009) write (p. 538)
“very few studies in the optimal tax literature have attempted to deal with multidimensional screening problems.
The nonlinear pricing literature in industrial organization has analyzed such problems extensively. A central
complication of multidimensional screening problems is that first order conditions are often not sufficient to
characterize the optimal solution. The reason is that solutions usually display “bunching” at the bottom
(Armstrong (1996), Rochet and Chone (1998)), whereby agents with different types are making the same
choices.” To sidestep this perceived difficulty, Kleven et al. (2009) further restrict agents’ choices by allowing
one of the spouses to make only binary labor supply decisions. They explain (p. 538) “Our framework with a
binary labor supply outcome for the secondary earner along with continuous earnings for the primary earner
avoids the bunching complexities and offers a simple understanding of the shape of optimal taxes based on
graphical exposition.”

2This result also allows us to explain that the failure of the FOA in multi-dimensional settings that was
observed by Armstrong (1996) and Rochet and Chone (1998) is driven not by incentive constraints per se but
by their interaction with participation constraints, which are typically absent in public finance applications.

3As it is standard in the optimal tax literature since the work of Mirrlees (1971), we characterize properties

of the monotone transformation of the marginal tax rates, ∂
∂yi

T (y1, y2)
/(

1− ∂
∂yi

T (y1, y2)
)
, where T is the

tax function and yi is earnings of spouse i. We refer to this object as the optimal tax distortion.
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tax rates for married persons are lower than for single, and the marriage rate is higher than

in the laissez-faire. The social planner cares about redistribution between more and less pro-

ductive individuals, and uses the tax system to provide this redistribution. Taxation, however,

has deadweight costs. When individuals form couples, they pool their resources, implicitly

redistributing resources within families. It is costly to crowd out this intra-family redistribu-

tion through distortionary taxation. As a result, the optimal tax rates are lower for married

households, which also incentivizes marriages.

Using our analytical formulas we can study how optimal distortions of a married household

depends on the degree of correlation in productivities of married couples. When matching into

couples is random, so that those productivities are uncorrelated, the optimal tax distortions

for married persons are exactly one half of those for single persons. The cost of tax distortion

is exactly the same for single and married persons but random matching implies that the

benefits of redistribution are cut in half, leading to this result. The more correlated spousal

productivities are the higher are optimal distortions are on average, but they always remain

below optimal distortions for single persons unless matching is perfectly assortative, in which

case the two coincide.

Within couples, secondary earners – spouses with much lower productivity then their part-

ners – generally face higher distortions than primary earners under the optimal tax code. The

planner who sufficiently cares about redistribution wants to target transfers to the poorest

individuals. Those transfers need to be phased out as secondary earner’s income increases,

leading to high labor distortions.

We also study how marginal taxes on one spouse dependent on earnings of the other, to

which we refer to as jointness. When matching is random, the optimal taxes for married

households are disjointed, so that taxes on one spouse do not depend on earnings of the other.

More generally, optimal jointness depends on two terms: how much more redistributed the

jointed tax system provides relative to a disjointed tax system, and how much extra distortions

it imposes. Positive jointness allows the planner to target taxes to the richest couples, negative

jointness allows the planner to target transfers to the poorest couples. Both types of jointness

exacerbate distortions from the best dis-jointed tax system. In the tails, for very productive and

very unproductive couples, the effect from exacerbation of distortions dominates redistributory

benefits from jointness for a large class of commonly used joined distributions. As the result,

the optimal jointness is negative at the top and positive at the bottom.

Once we complete our investigation of the optimal taxation in benchmark economy, we

consider a number of extensions. We show implications for optimal taxation of home production
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and economies of scale in consumption that marriage allows, bargaining over allocation of

resources within couples, extensive marginal labor supply adjustment, heterogeneous selection

into marriage, gender differences. We also explore implications for optimal taxation when the

social planner has alternative social objective functions or when restricted to use simpler taxes.

The Coarea formula approach that we developed in the benchmark economy allows us to derive

a number of sharp implications of these extensions.

In the last part of the paper, we characterize optimal taxes numerically. We use data on

the earnings of married households and the U.S. tax schedule to obtain the joint distribution of

productivities. We show that a Gaussian copula with Pareto-lognormal marginal distributions

can well approximate this distribution. We find that our analytical formulas provide excellent

guidance about numerical properties of the optimal tax schedule. In the U.S. data, spousal pro-

ductivities are positively but not perfectly dependent, so optimal taxes on married individuals

are higher than in the economy with random matching but lower than in the uni-dimensional

models such as Diamond (1998). The Gaussian copula is tail independent, so consistent with

our analytical results, optimal jointness is positive for low earners and negative for high earn-

ers. The quantitative magnitude of this optimal jointness is small, so individual earnings-based

taxes provide a good approximation to the optimal unrestricted tax schedule. In contrast, tax-

ation based only on total family earnings is generally quite far from the unrestricted optimum,

even when Pareto weights are chosen to explicitly favor family earnings-based taxation.

Our paper is related to several strands of literature. Small literature in public finance uses

the multi-dimensional mechanism design approach to study optimal taxation. Mirrlees (1976)

was perhaps the first to derive the partial differential equation that characterizes such taxes

under the assumption that the FOA is valid but noted that it is much more difficult to solve

than its uni-dimensional analog. Several authors imposed additional assumptions to simplify

the multi-dimensional tax environment. For example, Kleven et al. (2009) studied taxation of

couples but restricted one spouse to make only binary labor supply choices. Frankel (2014)

considered the case in which a binary distribution describes spouses’ productivities. Ales and

Sleet (2022) studied couples taxation in a discrete choice environment. Moser and de Souza e

Silva (2019) analyzed paternalistic savings policies in a model with two-dimensional discrete

heterogeneity. Alves et al. (2021) considered the optimal tax problem of couples but imposed

enough structure to collapse it into a uni-dimensional problem. Golosov et al. (2013) and

Lockwood and Weinzierl (2015) pursued a similar approach in labor and commodity taxation

with preference heterogeneity. Hellwig and Werquin (2022) discussed the generalization of their

ideas of redistributional arbitrage to multi-dimensional type spaces. In a series of papers, Roth-
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schild and Scheuer (2013; 2014; 2016) developed a mechanism design approach to study optimal

taxation in models with multi-dimensional private information but with uni-dimensional tax

instruments. In contrast to these papers, we develop an approach that allows us to analytically

characterize properties of optimal taxes in a fairly unrestricted multi-dimensional environment

and shed light on economic forces that are hard to see in more specialized settings.4

The most closely related to our study is the unpublished Section 3 of the working paper by

Kleven et al. (2007), henceforth KKS. In that section, KKS considered an economy populated

by married couples and made several very insightful observations. They noted that one should

expect the FOA to hold in optimal tax settings when the planner is close to utilitarian, derived

a formula that is analogous to our formula for the optimal average distortion, and charac-

terized the sign of optimal jointness under the assumption that spousal productivity draws

are independent. Our work systematically builds on these insights and allows us to obtain

many novel results, such as a comparison of conditions for the validity of FOA in uni- and

bi-dimensional settings, comparative statics results, implications of productivity dependence

on optimal taxation, comparison of optimal tax rates for single and married individuals or

spouses in the same couple, and implications of incorporation of various additional mecha-

nisms in benchmark model, such as home production or economies of scale, that have been

extensively studies in the family economics literature.

Several authors, such as Golosov et al. (2014), Spiritus et al. (2022), Ferey et al. (2022)

study optimal multidimensional taxation using an alternative, variational approach.5 They

consider perturbations of tax schedules and derive expressions for optimal rates in terms of

sufficient statistics. While their approach has many appealing features, its key limitation for

our purposes is that the optimal tax rates are expressed in terms of endogenous objects that

are themselves functions of the optimal tax schedule. This makes it difficult to use those

expressions to understand how the model’s structural parameters affect optimal taxes. In

contrast, our formulas are in terms of exogenous primitives, which allows us to prove sharp

theoretical results. That being said, we show in the paper how our formulas can be obtained

using variational techniques by constructing perturbations that allows one to express optimal

4In addition to these papers, our work is also related to the New Dynamic Public Finance literature (see., e.g.,
Golosov et al. (2003), Albanesi and Sleet (2006), Farhi and Werning (2013), Golosov et al. (2016), Stantcheva
(2017), Ndiaye (2018)) that studies optimal nonlinear taxes in dynamic environments in which information is
revealed over time. In those models, optimal taxes in a given period are a nonlinear function of earnings in
previous periods, but the dynamic nature of information revelation allows collapsing the mechanism design
problem to a sequence of problems with uni-dimensional incentive constraints. Also related is the recent work
by Kushnir and Shourideh (2022) who explore alternative ways to relax multidimensional mechanism design
problems.

5More recently, some ideas of this approach have been successfully applied by Bierbrauer et al. (2023) to
detect Pareto inefficiencies in the joint taxation of couples income.
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taxes in terms of model’s primitives. Those perturbations differ from ones typically considered

in the literature and should be of independent interest.

Gayle and Shephard (2019) and Spiritus et al. (2022) use numerical methods to study the

optimal joint taxation of couples. Boerma et al. (2022) developed techniques to tackle multi-

dimensional mechanism design problems when the FOA fails. Our work is complementary to

theirs. Analytical results we derive provide insights about forces that determine optimal taxes

that are often hard to see with numerical work.

The rest of the paper is organized as follows. In Section 2, we present our environment. In

Section 3, we describe the mechanism design approach and conditions for the validity of the

FOA. Section 4 characterizes optimal taxes in the benchmark economy. Section 5 considers

its various extensions. Section 6 provides calibration and quantitative analysis. Section 7

concludes.

2 The benchmark environment

In this section, we describe the benchmark economy. This economy allows us to present our

main ideas and results in the most transparent way. Later in the paper, in Section 5, we

consider various extensions and modifications of this economy to highlight implications of

additional economic forces from which the benchmark economy abstracts.

The benchmark economy is populated by measure one of ex-ante identical individuals or

persons. Each individual has utility c − γl1/γ, where c and l denote consumption and labor,

and γ ∈ (0, 1) is the parameter capturing the elasticity of labor supply.6 Each person decides

whether to stay single or get married, and how much to work and consume. All decisions occur

in three stages.

Stage 1. Each person draws a preference shock ε that captures non-pecuniary benefits of

marriage. Let EU s and EUm be expected utilities from consumption and labor that person

i obtains if that person decides to stay single and get married. The person stays single if

EU s + ε ≥ EUm, and goes to the marriage market otherwise.

Preference shocks ε are i.i.d. across agents and independent of all other shocks. They

are drawn from an absolutely continuous probability distribution that has support on R and

strictly positive density. We use Φ to denote the inverse of the cdf of this distribution.

Stage 2. Each person who went on the marriage market receives a signal q. This signal is

observable to all individuals on the marriage market. Signal q is uncorrelated across individuals

but may be correlated with productivity w, which is realized in Stage 3. Individuals on the

6In particular, the relationship between the elasticity of labor supply e and the parameter γ is 1/γ = 1+ 1/e.

6



marriage market use these signals to form married couples. In particular, each person on the

marriage market marries another person on that market who has the same signal, and they

agree to share their marital surplus equally.

We use µ to denote the marriage rate, i.e., the fraction of individuals who get married.

Stage 3. Each person, married or single, draws productivity w from a cumulative probability

distribution G. A person with productivity w who works l hours earns income y = wl. After

productivity draws are realized, single and married households decide how much to work and

consume taking into account taxes T s and Tm for single and married households. The decision

problem of a single person household is

vs (w) := max
(c,y)

c− γ
( y
w

)1/γ
s.t.c ≤ y − T s (y) , y ≥ 0.

The decision problem of a married household is

vm (w1, w2) := max
(ci,yi)

2
i=1

2∑
i=1

(
ci − γ

(
yi
wi

)1/γ
)

s.t.

2∑
i=1

ci ≤
2∑

i=1

yi − Tm (y1, y2) , (y1, y2) ≥ 0.

Let U s(w) = vs(w) be utility from consumption and labor of a single person with produc-

tivity w, and Um (wi|w−i) be utility of a married person with productivity wi whose partner

has productivity w−i. Equal surplus division agreed in Stage 2 implies that Um (w1|w2) =

Um (w2|w1) = 1
2v

m (w1, w2).
7

We use F (w1, w2) to denote the joint distribution of productivities of couples, which we

can assume, without loss of generality, to be symmetric. Let F (wj |wi) to denote the condi-

tional distribution of productivities of a married individual with productivity wi. Given these

definitions, expected utilities EU s and EUm used in Stage 1 are given by

EU s =

∫
U s(w)G(dw), EUm =

∫ (∫
Um(wi|w−i)F (dw−i|wi)

)
G(dwi).

To streamline our exposition and simplify technical details, we assume that G has domain

R+, density g, and satisfies
∫
w1/(1−γ)dG < ∞. In our benchmark economy, signals q do

not play an important role and we do not need to specify how they are correlated with w; it

suffices to take F as the primitive of this economy. We assume that F has density denoted

by f . Our assumptions imply that F is symmetric with marginals G, and the distribution of

productivities of single persons is also G.

The benchmark economy is purposefully set up to isolate key implications of optimal tax-

ation of single and married households in the simplest settings. It is also very amendable to

7Maximization problem that defines vm pins down only the sum C = c1 + c2. Surplus division rule allocates
that C between the two spouses.
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extensions since, by slightly changing details of the events in each stage or the order at which

different stages occur, we can incorporate a variety of economic mechanisms related to mar-

riage that has been emphasized by the empirical labor literature. For now, we review some of

the main features of our benchmark settings. All individuals are ex-ante identical. They marry

before they know their productivities and share their realized marital surplus equally. Mar-

riages are potentially assortative, so that spousal productivities might be correlated. Signals q

can be interpreted as education or other observable socio-economic indicators that individuals

use when selecting marriage partners. As mentioned above, these signals in the benchmark

economy merely provides a micro-foundation for F and equal surplus division, and play no role

otherwise; they will be helpful once we allow for marriage rates to be correlated with produc-

tivities in Section 5.7. Marriage decisions are influenced both by taxes, that affect pecuniary

utilities EU s and EUm, and by non-pecuniary benefits ε (“love”). Distribution Φ captures the

relative importance of the two forces and the responsiveness of marriage rates to taxes. Our

assumptions imply that µ ∈ (0, 1) and Φ is differentiable with strictly positive derivative, so

that the elasticity of marriage to changes in pecuniary benefits is not zero. This streamlines our

discussion as we do not need to worry about corner solutions. Exogenous marriages, that do

not respond to taxes, can be modeled as a distribution of ε that assigns positive probabilities

only to two values ε and −ε for some large ε. While this case does not fit into out framework,

it can be approximated arbitrarily closely by choosing appropriate Φ.

Earnings of married spouses are positively correlated in the data. The joint distribu-

tion F allows us to capture correlation. It will be useful to review general statistical no-

tions of dependence.8 We say that productivities are independent, or matching is random, if

F (w1, w2) = G(w1)G(w2) for all w1, w2, or F = G2 for short. Productivities are positively

dependent if F ≥ G2. Positive dependence (also known in statistics as positive quadrant de-

pendence or PQD) is equivalent to the condition that Cov (ϕ1 (w1) , ϕ2 (w2)) ≥ 0 for any two

increasing functions ϕ1 and ϕ2. Distribution F b is more dependent than F a if F a and F b have

the same marginals and F b ≥ F a. We denote this by F b ≥PQD F a. In statistics, this is known

as the positive quadrant dependence order, and it allows us to conduct comparative statics

analysis with respect to a degree of assortativeness in productivities in general, non-parametric

settings. Any F satisfies bounds F ∗ ≥PQD F ≥PQD F∗, where F ∗ and F∗ are distributions

under perfect positive and negative assortative matching. We allow our economy to include

the case of perfect assortative matching as it provides a useful bound even though strictly

speaking it does not satisfy our stated assumptions as F ∗ does not have density.

8See Nelsen (2006); Shaked and Shanthikumar (2007) for textbook discussion of dependence concepts for
bi-variant random variables.
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The main focus of our paper is on characterizing properties of optimal taxation. Before we

study it, it will be useful to describe the equilibrium of our model in the absence of taxes. We

refer to this economy as laissez-faire and use superscripts LF to denote allocations there.

Lemma 1. In the laissez-faire, EUm,LF = EU s,LF , and both EUm,LF and µLF are independent

of F (holding G fixed).

In the laissez-faire, the expected utility of consumption and labor is the same for all per-

sons, married and single, and this utility is independent of assortativeness of matching in the

marriage market. In laissez-faire economy, the total amount of resources available for single

and married persons is the same. Marriage and assortativeness of matches introduces uncer-

tainty into how those resources get eventually allocated but individuals are risk neutral and

this uncertainty does not affect their marriage decisions and ex-ante utility.

3 Optimal taxation as a mechanism design problem

We now turn to characterizing optimal taxes. We first need to specify the social objective that

the planner, who sets these taxes, maximizes. In the benchmark economy, we assume that

this social objective is given by W :=
∫
α(w)E [U |w]G(dw), where E [U |w] is the expected

utility of a person with productivity w and function α captures Pareto weights. We assume

that α is non-negative, strictly decreasing, bounded, continuous function normalized so that∫
α(w)G(dw) = 1.

It will be useful to re-write W in terms of vs and vm that we introduced at Stage 3. Let

function α̃ be defined by

αm(w1, w2) :=
1

2
α(w1) +

1

2
α(w2) (1)

and observe that

E [U |w] = µE [Um|w] + (1 − µ)E [U s|w] +

∫ 1

µ
Φ (ε) dε.

Substitute this expression into the definition of W and re-arrange terms to see that welfare

can be written as

W =
µ

2
E [αmvm] + (1 − µ)E [αvs] +

∫ 1

µ
Φ (ε) dε. (2)

The planner chooses taxes T s and Tm to maximize this welfare. Taxes must be budget-

feasible, so that total tax revenues are non-negative, but can be arbitrary functions otherwise.

We refer to them as optimal (unrestricted) taxes. In Section 5.9 we consider optimal taxes

that have additional restrictions imposed on them and show that there is a close relationship
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between optimal unrestricted and restricted taxation. Note that the domain of Tm is R2
+, so

that it is a bi-dimensional function.

3.1 The mechanism design problem

We study our optimal tax problem using the mechanism design approach. Our steps in setting

up the mechanism design problem, simplifying it, and deriving its optimality condition are

standard, and we present them in the body of the paper heuristically. At the same time,

some care is needed if one wants to use these conditions to verify sufficiency, i.e., whether tax

functions that satisfy these conditions are indeed optimal. For this reason, in the appendix we

state our mechanism design problem formally, being explicit about functional spaces in which

various functions live, bounds that they satisfy, and notions of differentiability that we apply.

We use bold letters, such as w, to denote pairs (w1, w2) for a married couple. Using

standard Taxation principle arguments (see, e.g., Hammond (1979)) one can show that T s, Tm

are budget feasible if and only if there exists µ ∈ [0, 1] and tuples (vs, cs, ys) and (vm, cm,ym)

that satisfy

vs (w) = cs (w) − γ

(
ys (w)

w

)1/γ

, vm (w) =
2∑

i=1

(
cmi (w) − γ

(
ymi (w)

wi

)1/γ
)
∀w,w (3)

vs (w) ≥ cs (ŵ) − γ

(
ys(ŵ)

w

)1/γ

, vm (w) ≥
2∑

i=1

(
cmi (ŵ) − γ

(
ymi (ŵ)

wi

)1/γ
)
∀w, ŵ,w, ŵ (4)

µ

2

∫ 2∑
i=1

(ymi (w) − cmi (w))F (dw) + (1 − µ)

∫
(ys(w) − cs(w))G(dw) ≥ 0, (5)

Φ(µ) =
1

2

∫
vm(w)F (dw) −

∫
vs(w)G(dw). (6)

Equation (3) gives definitions of utilities of married and single households, and equation (4)

are the incentive constraints. Equation (5) says that total consumption cannot exceed total

earnings. Finally, equation (6) shows that the fraction of married households is determined by

the value of ε at which a person is indifferent between being married and staying single.9 From

any allocation that satisfies these constraints one can construct budget-feasible tax functions

T s and Tm that decentralize this allocation as households optimal choices given these taxes.

Thus, the optimal tax problem can be stated as a choice of µ, (vs, cs, ys), (vm, cm,ym) that

maximize welfare (2) subject to constraints (3) – (6).

9The marriage rate µ is given by equation µ = Pr (ε ≤ EUm − EUs). Inverting Pr (·), we obtain Φ (µ) =
EUm − EUs, which is equation (6) written in terms of vm and vs.
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This problem can be simplified. Note that the incentive constraints (4) imply, due the

Envelope Theorem, the following relationships:

∂vs(w)

∂w
=

(ys (w))
1/γ

w1+1/γ
,

∂vm (w)

∂wi
=

(ymi (w))
1/γ

w
1+1/γ
i

for i = 1, 2. (7)

We can use (7) to substitute out for ys, ym and (3) to substitute for cs, cm1 +cm2 in the constraint

set of the mechanism design problem. This allows to write the mechanism design problem as

a choice of µ, vs, vm that maximize welfare (2) subject to (6),

µ

2

∫ ( 2∑
i=1

(
w1+γ
i

(
∂vm (w)

∂wi

)γ

− γwi
∂vm (w)

∂wi

)
− vm(w)

)
F (dw)+

+ (1 − µ)

∫ (
w1+γ

(
∂vs(w)

∂w

)γ

− γw
∂vs(w)

∂w
− vs(w)

)
G(dw) ≥ 0, (8)

and, for all w, ŵ,w, ŵ,

vs (w) ⩾ vs (ŵ) + γŵ
∂vs (ŵ)

∂w

((
ŵ

w

)1/γ

− 1

)
, (9)

vm (w) ⩾ vm (ŵ) +

2∑
i=1

γŵi
∂vm (ŵ)

∂wi

((
ŵi

wi

)1/γ

− 1

)
. (10)

Observe that all the local incentive constraints are already inside of the objective function

(8), so constraints (9), (10) can affect the solution to this maximization problem only if some of

the non-local constraints bind. The relaxed problem is the mechanism design problem in which

these constraints are dropped. Let (µ∗, vs,∗, vm,∗) be the solution to this relaxed problem. We

say that the first-order approach (FOA) is valid if (µ∗, vs,∗, vm,∗) is also the solution to the

original problem. We say that the FOA is valid for single households if the solution to the

relaxed problem satisfies (9) for single but not necessarily (10) for married households, and the

FOA is valid for married households in the opposite case.

3.2 Validity of the FOA

The analysis of the mechanism design problem substantially simplifies when the FOA is valid.

In uni-dimensional settings, essentially all papers that characterize optimal taxes analytically

(e.g., Mirrlees (1971), Diamond (1998), Saez (2001)) assume that the FOA holds. While it

is known that the FOA may fail in uni-dimensional settings for some parameter values, those

cases appear to be rare in realistic applications that verify FOA validity numerically (see, e.g.,

Farhi and Werning (2013), Golosov et al. (2016), or Heathcote and Tsujiyama (2021)). One
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common concern, exemplified by the quote from Kleven et al. (2009) given in the introduction,

is whether the FOA is ever valid in multi-dimensional settings.

In this section, we examine conditions for validity of the FOA in our benchmark economy

when matching is random. In this case, we can derive explicitly necessary and sufficient

conditions for the validity of FOA for both single and married households, and compare them.

It turns out that conditions for validity of FOA for married households are less stringent than

for single households, and so the FOA is more likely to hold in the bi-dimensional case.

Proposition 1. Consider the benchmark economy with random matching. Define λ# (t) :=∫∞
t (1−α(w))g(w)dw

γtg(t) and assume that it is bounded, continuously differentiable with bounded deriva-

tives.

The FOA for single households is valid if and only if

x ·
(

1 + λ#
(
x−γ

))
is increasing in x. (11)

The FOA for married households is valid if and only if

x ·
(

1 +
1

2
λ#
(
x−γ

))
is increasing in x. (12)

In particular, (12) holds whenever (11) holds.

The proof of this proposition is given in the appendix. It consists of two steps. First, we

reformulate our mechanism design problem in transformed type variables x = w−1/γ. Using

this transformation has an advantage because the global incentive constraints (9) are linear in

x. The results of Rochet (1987) for such problems imply that validity of FOA is equivalent

to the convexity of solution to the relaxed problem. The second step is to solve the relaxed

problem explicitly, which it possible to do when matching is random, and verify conditions for

convexity directly. Solutions to the relaxed problems for single and married are convex if and

only if equations (11) and (12) hold. Examination of these equations reveals that the FOA is

more likely to hold for married than for single households.

It is insightful to consider the economic interpretation of equations (11) and (12). Condition

(11) can equivalently be written as[
1 + λ# (w)

(
1 + γ

∂ ln (wg (w))

∂ lnw

)]
+ [1 − α (w)] ≥ 0 for all w. (13)

The term in the first square brackets is typically positive; the term in the second square brackets

is negative for low w and positive for high w. Thus, inequality (13) is violated if the second

term is sufficiently negative relative to the first, which occurs if the planner puts sufficiently
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high Pareto weights on some low types. In other words, the FOA holds for single households

if the planner is not “too redistributive” in the precise sense given by equation (13). The

analogous conditions for married households is similar but allows for a larger set of weights α.

We discuss the intuition for this result once we characterize optimal taxes in Section 4.

The conclusion of Proposition 1 is a special case of a more general insight that multi-

dimensional mechanism design problems in public finance are fundamentally different from

multi-dimensional pricing problems studied by Armstrong (1996) and Rochet and Chone

(1998). The mechanism designer in pricing problems aims to extract maximum surplus from

agents. In contrast, the mechanism designer in public finance settings aims to redistribute

resources. The surplus extraction problem is isomorphic to a very particular, highly redis-

tributive set of social weights for which indeed the FOA fails in more than one dimension. But

the FOA still holds for a wide class of Pareto weights used in applied work.10

Motivated by this finding, we assume for the rest of the paper that the FOA is valid and

describe properties of the optimal taxes under this assumption. In our quantitative analysis

in Section 6 we numerically check validity of the FOA and finds that it holds in all cases that

we consider in the calibrated economy.

3.3 Optimality conditions to the relaxed problem

We now characterize optimality conditions to the relaxed mechanism design problem. It will

be convenient to state them not in terms of vs,∗, vm,∗ but transformations of these functions

λs,∗ and λm,∗ =
(
λm,∗
1 , λm,∗

2

)
defined by

λs,∗ (w) :=

(
∂vs,∗ (w)

∂w

)γ−1

wγ − 1, λm,∗
i (w) :=

(
∂vm,∗ (w)

∂wi

)γ−1

wγ
i − 1. (14)

These transformations are closely related to the optimal taxes T s,∗, Tm,∗ via

∂
∂yT

s,∗ (y∗(w))

1 − ∂
∂yT

s,∗ (y∗(w))
= λs,∗ (w) ,

∂
∂yi
Tm,∗ (y∗ (w))

1 − ∂
∂yi
Tm,∗ (y∗ (w))

= λm,∗
i (w) , (15)

where y∗(w), y∗(w) correspond to optimal choices of earnings by single and married house-

holds under the optimal tax system. Thus, λs,∗ and λm,∗ are monotone transformations of

optimal marginal tax rates, and we refer to λs,∗ and λm,∗ as optimal distortions. λm,∗ is also

closely related to the cross-partial derivative of Tm,∗ and satisfies sign
(

∂2

∂y1∂y2
Tm,∗ (y∗ (w))

)
=

sign
(

∂
∂w−i

λ∗i (w)
)

for all i. We say that Tm,∗ is positively (negatively) jointed at w if this

10We discuss these conditions and present formal results for a broad class of multi-dimensional tax problems
in Golosov and Krasikov (2023). See also Kleven et al. (2007) for a related discussion.
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sign is positive (negative), Tm,∗ is separable or disjointed if this cross partial is always zero.

Separable taxes can be written as Tm,∗(y1, y2) = T̃m,∗(y1) + T̃m,∗(y2).

We now derive the optimality conditions for the relaxed mechanism design problem. It

is easy to show, using the fact that
∫
α(w)G(dw) =

∫
αm(w)F (dw) = 1, that the Lagrange

multiplier on (8) is equal to one. Standard variational arguments can be used to show that

vs,∗ satisfies
∂

∂w

(
λs,∗ (w) γwg (w)

)
= (α (w) − 1) g (w) (16)

with a boundary condition

lim
w→0,∞

λs,∗ (w)wg (w) = 0. (17)

Similarly, the optimality conditions for vm,∗ are given by

2∑
i=1

∂

∂wi

(
λm,∗
i (w) γwif (w)

)
= (αm (w) − 1) f (w) , (18)

with a boundary condition

lim
wi→0,∞

λm,∗
i (w)wif (w) = 0 for all w−i. (19)

Moreover, the cross-partials of vm,∗ must agree, in the sense that ∂2vm,∗
∂w1∂w2

= ∂2vm,∗
∂w2∂w1

, which can

be written in terms of λm,∗ as

∂

∂ lnw2

(
w1

1 + λm,∗
1 (w)

)1/(1−γ)

=
∂

∂ lnw1

(
w1

1 + λm,∗
1 (w)

)1/(1−γ)

. (20)

The first order condition with respect to µ can be expressed as

1 − γ

2

∫ 2∑
i=1

wi

(
wi

1 + λm,∗
i (w)

)γ/(1−γ)

F (dw) − (1 − γ)

∫
w

(
w

1 + λs,∗(w)

)γ/(1−γ)

G(dw) =

= Φ(µ∗). (21)

These conditions are both necessary and sufficient for characterization of optimal taxes under

mild boundedness assumptions stated in the appendix.11 sufficient

4 Optimal distortions for single and married households

In this section, we use equations (16) – (21) to characterize properties of optimal taxes. As in

Section 3, we focus in the body of our paper on showing the economic insights. Some results,

11Those conditions are similar to the conditions on λ̃ that we used in Proposition 1. In fact, it can be shown
that λs,∗ = λ̃ in that economy.
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mainly those requiring us to take limits w → 0,∞, require additional regularity conditions F ,

G must satisfy. Stating and discussing those conditions interrupts the flow of the presentation

and we relegate them to the appendix.

Observe that there are no linkages between the ordinary differential equation (16) – (17)

that characterizes λs,∗, and a system of partial differential equations (18) – (20) that charac-

terize λm,∗. This is due to the fact that the Lagrange multiplier on (6) is equal to zero. This

result has a natural economic interpretation. Constraint (6) captures how much the planner

wants to redistribute between single and married. In our benchmark economy, the planner

uses the same Pareto weight on any individual irrespective of their marital status, and thus

constraint (6) is slack.

Since there are no linkages in the optimality conditions for single and married, the corre-

sponding optimal distortions can be solved independently of each other, and that they do not

depend on the marriage rate µ∗. Distortions λs,∗ and λm,∗ fully characterize optimal marginal

taxes ∂
∂yT

s,∗ and
(

∂
∂yi
Tm,∗

)2
i=1

. The optimal average taxes also depend on intercepts T s,∗(0)

and Tm,∗(0, 0) that are determined, together with µ∗, by equation (21).

Because optimal distortions for single households are independent of the marriage rate,

they coincide with optimal distortions in the economy that has only single households, which

is isomorphic to an environment that has been studied extensively in public finance. Inte-

grate equation (16) from t to ∞, using the boundary conditions (19), to find the closed-form

expression for λs,∗:

λs,∗ (t) =
1 − E [α|w ≥ t]

γθ (t)
, (22)

where θ(t) is the tail statistics of G defined as

θ (t) :=
tg (t)

1 −G (t)
. (23)

Equation (22) is the optimal tax formula that is well-known from the work of Diamond (1998)

and the textbook treatment in Salanie (2003). The optimal tax on singles features a familiar

trade-off between benefits of redistribution and costs of taxation. A higher marginal tax rate on

a single person with productivity t, returned back uniformly to all single households, increases

average taxes for all w > t. The social value of a dollar in the hands of a single person with

productivity w is α (w), the social value of a dollar in the hands of an average single person

is
∫
α(w)G(dw) = 1. Therefore, the numerator of (22) captures the benefits of redistribution.

The denominator of (22) captures the cost of tax distortions. Those distortions arise because

individuals with productivity w = t reduce their earnings and hence tax revenues collected
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from those households. The reduction in tax revenues is determined by elasticity parameter of

labor supply γ, productivity t, and the mass of agents affected by this perturbation g(t).

The optimality conditions for married persons is represented by a system of non-linear

partial differential equations (18) – (20). Unfortunately, solving such equations in general is

hard.12 Our approach is to sidestep the difficult task of characterizing λm,∗ analytically at

every point w. Instead, we exploit the fact that equation (18) is a relatively tractable linear

differential equation in λm,∗. As such, conditions (18) can be integrated over various subsets of

R2 to find a variety of conditional averages of distortions λm,∗. The key mathematical tool that

we will use is the Coarea Formula.13 This formula states that for any function Q : R2
++ → R++

that satisfies mild technical restriction equations (18) and (19) imply

E

[
2∑

i=1

λm,∗
i

∂ lnQ

∂ lnwi

∣∣∣Q = t

]
=

1 − E [αm|Q ≥ t]

γt−∂ Pr(Q≥t)
∂t /Pr (Q ≥ t)

. (24)

Formula (24) shows that optimal distortions for married households can be represented in

the very general sense by the same trade-off between the benefits from redistribution and the

costs of distortions the determines optimal taxes for single households. Equation (24) holds for

any function Q, and by considering various such functions, one can obtain rich characterization

of optimal distortions. The intuition for (24) can be obtained by studying perturbations of the

joint tax function T whereby we increase tax levels by $1 for all couples w that satisfyQ (w) > q

and adjust the lump sum tax component to satisfy the government budget constraint.

As we pointed out above, the benchmark social planner values single and married persons

equally and does not have inherent desire to redistribute between them. Nonetheless, optimal

taxes do affect utilities of single and married persons differently, and hence they also affect the

marriage rate. The next result compares those in the optimum and the laissez-faire.

Lemma 2. In the optimum, 1
2v

m,∗ = EUm,∗ ≥ EU s,∗ = vs,∗ and µ∗ ≥ µLF . EUm,∗, EU s,∗ and

µ∗ depend on F .

12Renes and Zoutman (2017) show that if λm,∗ is a conservative vector field (i.e., it is a gradient of some
function so that ∂

∂w2
λm,∗
1 = ∂

∂w1
λm,∗
2 ) then it can be characterized in some cases using so-called Green functions.

Unfortunately, there is no reason in general for λm,∗ to be such a field; instead, the relevant auxiliary condition
is (20) which equivalent to requiring that the gradient of vm,∗ is a conservative vector field. This equation is
highly non-linear which makes it difficult to find λm,∗ or to use Green functions.

13The Coarea Formula is a generalization of Fubini’s theorem that expresses an integral of a function in terms
of integrals over the level sets of another function. We use it in conjunction with the Divergence Theorem,
which is a multidimensional analogue of integration by parts, to integrate (18) over upper contour sets of Q
and express the value of that integral in terms of conditional averages of the optimal distortions on level sets
of Q. Different functions Q allows us to study different subsets, i.e., upper contour sets of Q. This becomes
particularly convenient when subsets that we are interested in have relatively complicated structure. Those
subsets emerge when we compare optimal distortions within couples or study conditions under which taxation
of total family income y1 + y2 is optimal.
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The key take-away from this lemma is that the social planner implicitly encourages mar-

riages in the optimum. The marriage rate µ∗ depends on how assortative the matching into

marriage is, and hence on the implicit incentives for marriage that the tax system provides.

Our analysis below will shed light on why this is the case. Before we study our economy for

arbitrary F , it will be useful to focus on the special case when F is independent. This is the

same economy we considered in Section 3.2.

Lemma 3. In the benchmark economy with random matching, λm,∗
i is independent of w−i and

satisfies

λm,∗
i (t, w−i) =

1

2
λs,∗(t) for all t, w−i.

The optimal taxes Tm,∗ are separable.

Lemma 3 shows that in the economy with random matching optimal taxes for married

persons take a very simple form. A married person faces a tax on their earnings y of the form

T̃m,∗(y), which is independent of earnings of their spouse. The marginal taxes for married

persons are lower than for single, with optimal distortions for married persons being exactly

one half of distortions for single persons with the same productivity.

To understand the intuition for this result, it is helpful to repeat the same perturbational

thought experiment that we gave after equation (22) but now adapting it to T̃m,∗. Recall that

in our benchmark economy the distribution of productivities of single and married persons is

the same, G. Thus, costs of tax distortions are the same for single and married, and are given by

γθ(t). In contrast, the benefits from redistribution are different for single and married persons.

Married persons share resources with their spouses. Thus, the burden of extra $1 of taxes on a

married person is split within the couple. Therefore, the benefits of redistribution depend not

only on the social weight of the statutory tax-payer but also on the social weight of their spouse.

In the economy with random matching, a person of any productivity marries, in expectation,

a spouse with average productivity. This implies that the benefits from redistribution for

married persons are cut in half, leading to the formula in Lemma 3.

The key insight of this discussion is that some redistribution of resources occurs within

families. The planner values this redistribution and it is costly to crowd it out through tax-

ation. Thus, the planner keeps the burden of taxation for married persons lower, implicitly

incentivizing selection in the marriages as shown in Lemma 2.

When matching is non-random, optimal taxes for married households are, generally, non-

separable and their characterization is more involved. However, one can show that the insights

from our random matching economy continue to apply “on average” and further sharpen our
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characterization of this result. Towards this end, set Q (w) = wi in formula (24) to obtain an

expression for the optimal average distortion for a married person with productivity t:

E
[
λm,∗
i |wi = t

]
=

1 − E [αm|wi ≥ t]

γθ(t)
. (25)

Equation (25) is remarkably similar to equation (22). The intuition for it can be understood

by considering a perturbation that raises $1 of tax revenues from couples in which a spouse

has productivity w > t. Since the distribution of productivities for married persons is G, the

cost of tax distortion from the perturbation is the same as for single persons and given by

γθ(t). The benefit of redistribution depend on E [αm|wi ≥ t], which captures both the social

weight of the person with productivity w and the weight of their spouse. One can show that

this term is decreasing in the degree of assortativeness of marriage matching, leading to the

following comparative statics result.

Lemma 4. Consider two economies, a and b, which are identical in all respects except the joint

distribution of productivities, and assume that F a ≤PQD F b. Then the relationship between

optimal distortions in the two economies is

Ea
[
λm,a,∗
i |wi = t

]
≤ Eb

[
λm,b,∗
i |wi = t

]
≤ λs,b,∗ (t) = λs,a,∗ (t) for all t.

The second inequality becomes equality if F b is perfectly assortative.

Ea
[
λm,a,∗
i |wi = t

]
≥ 0 for all t if F a is positively dependent.

Lemma 4 shows that optimal average distortions are ranked by dependence, so stronger

dependence implies higher average distortions. The average distortions are highest in the

economy with perfect assortative matching,14 and in which case distortions for single and

married persons coincide. In general, optimal distortions for a married person are lower on

average than for a single person of the same productivity. Some redistribution occurs within

couples even in the absence of taxation, and it is costly to crowd it out via distortionary

taxation.

The last part of Lemma 4 extends the insight of Mirrlees (1971) that in the optimum labor

distortions are non-negative. In bi-dimensional settings, this result requires, in addition to

the assumption that Pareto weights are decreasing, that productivities are positively depen-

dent. It is easy to construct examples with optimal negative distortions for some types when

productivities are negatively correlated.15

14The same arguments also imply that distortions are lowest economies with perfect negative assortative
matching.

15Just like in the uni-dimensional settings, the optimal labor distortions may be negative if Pareto weights
are locally increasing for some w.
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Our benchmark economy is summarized by three objects: the joint distribution F , the

elasticity parameter γ, and Pareto weights α. Lemma 4 provides comparative statics for

optimal average distortions with respect to the dependence embedded in F . It is immediate

to use equation (25) to observe that E
[
λm,∗
i |wi = t

]
is decreasing in γ, so that higher labor

supply elasticity leads to lower taxes. The next lemma provides a comparative statics with

respect to α.

Lemma 5. Consider two economies, a and b, which are identical in all respects except the

Pareto weights, and assume that αb(w)/αa(w) is decreasing in w. Then, λs,a,∗(t) ≤ λs,b,∗(t)

for all t. In addition, if f is log-supermodular, then E
[
λm,a,∗
i |wi = t

]
≤ E

[
λm,b,∗
i |wi = t

]
for

all t.

Pareto weights αb are more redistributory than αa in the sense that they assign higher

weights on lower types.16 In a uni-dimensional model, more redistributive Pareto weights imply

higher optimal distortions. In bi-dimensional settings, the same result holds of, in addition, f is

log-supermodular. Supermodularity is satisfied by many commonly used positively-dependent

distributions, e.g., by the bivariate log-normal distribution with a non-negative correlation

parameter (see Karlin and Rinott (1980) for other examples).

Before we proceed with further analysis, it will be useful to point out that equations (22)

and (25) can equivalently be written as

λs,∗ (t) =
E [α|w ≤ t] − 1

γtg (t) /G (t)
, E

[
λm,∗
i

∣∣∣wi = t
]

=
E [αm|wi ≤ t] − 1

γtg (t) /G (t)
. (26)

These equations highlight an alternative way to think about the trade-off that determines

optimal distortions. Consider a perturbation in which the planner increases transfers by $1 to

the poorest persons (either single or married) that are then phased-out at some productivity

level t, and the whole tax schedule (for single or married) is adjusted accordingly to be budget-

neutral. The benefit of this redistribution is represented by the numerators of the expressions

in (26). Phasing out of transfers distorts labor supply, and the cost of this distortion is captured

by the denominators in (26). Equations (26) are mathematically equivalent to (22) and (25) as

both raising taxes from the richest and giving transfers to the poorest creates the same changes

in the tax schedule. This equivalence will no longer hold once we consider more sophisticated

perturbations to discuss optimal jointness.

Equation (25) sheds light on how optimal distortions compare between married individuals

with different productivities. Since it takes the same form as (22), the analysis of Diamond

16In mathematics, our definition of “more redistributory” weights is known as the uni-variant likelihood ratio
order. See Chapters 1.C and 6.E of Shaked and Shanthikumar (2007).
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(1998) applies directly. Another insightful way to describe optimal distortions for married

persons, that does not have an analogue in uni-dimensional analysis, is to compare distortions

between two spouses in the same couple. Let ι = w2/w1 be the relative productivity of the

two spouses in a couple, and Gι be the cumulative distribution of ι implied by F . We use θι

to denote the tail statistics of Gι defined by analogy with (23). By setting Q (w) = w2/w1 in

formula (24) we obtain

E
[
λm,∗
2 − λm,∗

1 |w2/w1 = ι
]

=
1 − E [αm|w2/w1 ≥ ι]

γθι(ι)
. (27)

In this formula, λm,∗
2 (w)−λm,∗

1 (w) is the difference of distortions between the two spouses

in the same couple, and E
[
λm,∗
2 − λm,∗

1 |w2/w1 = ι
]

is the average of this difference across

all couples whose relative productivity w2/w1 is equal to ι. Equation (27) shows that this

average relative distortion is determined by a formula very similar to (25), except that the

cost of distortions is summarized by θι rather than θ. The next lemma derives implications of

this equation for relative distortions between two spouses who are sufficiently different in their

productivity.

Lemma 6. If α(0) > 2 and limι→∞ E [w2|w2/w1 ≥ ι] <∞, then E
[
λm,∗
2 −λm,∗

1

∣∣w2/w1 = ι
]
< 0

for all sufficiently large ι.

This lemma focuses on the case when the planner is sufficiently redistributive to low earners,

in the sense that α(0) > 2. The condition rules out extreme negative dependence when the most

unproductive type, w1 = 0, is matched to very productive types. This condition is satisfied if

productivities are independent or log-normally distributed with correlation parameter ρ ≥ 0.

The lemma shows that a spouses who have much lower productivity than their partner faces,

on average, higher distortions. This result has a natural interpretation that secondary earners

(i.e., spouses with lower earnings in a couple) face higher marginal tax rates than primary

earners. The intuition for this result is that the redistributive planner targets transfers to

couples with low earners. These transfers are being phased out as earnings of the secondary

earner increase, leading to the high implicit marginal tax rates for such spouses. Note that

this result also implies that family-earnings based taxation, i.e., a tax schedule of the form

Tm (y1, y2) = T̃m(y1 + y2), is generally suboptimal in the benchmark economy.
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4.1 Optimal jointness

In this section, we study optimal jointness of couples taxation. To make our exposition most

transparent, we focus on a particular measure of jointness, defined as

J (t) =
E
[
λm,∗
i |wi = t, w−i ≥ t

]
E
[
λm,∗
i |wi = t, w−i ≤ t

] − 1, (28)

which we refer to as average jointness. This measure is positive if a person’s distortion are

higher when married to a more productive spouse than when married to a less productive

spouse.

As the first step to characterize properties of J , set Q(w1, w2) = min{w1, w2} in formula

(24) and re-arrange to obtain

E
[
λm,∗
i |wi = t, w−i ≥ t

]
=

Pr(w−i ≥ t|wi ≥ t)

2 Pr(w−i ≥ t|wi = t)

1 − E [αm|w ≥ (t, t)]

γθ (t)
. (29)

This formula provides a closed-form expression for the average distortions conditional on being

married to a more productive partner. By comparing this equation to the unconditional

average, equation (25), we can derive the closed form expressions for J . In particular, it is

easy to see that

J (t) ≥ 0 ⇐⇒ A(t) ×B(t) ≥ 1 (30)

where

A(t) :=
1 − E [αm|w ≥ (t, t)]

1 − E [αm|wi ≥ t]
, B(t) :=

Pr(w−i ≥ t|wi ≥ t)

2 Pr(w−i ≥ t|wi = t)
.

This expression shows that the sign of the jointness is determined by two forces, A and

B. As we explain below, A captures additional redistributive benefits of taxation that positive

jointness gives to the planner, and this expression is greater than one; B captures additional

distortions from positive jointness, and it is less than one. Thus, jointness is positive if the

redistributive benefits outweight additional costs, and negative otherwise.

To develop the intuition for this expression, consider the following thought experiment.

Take a disjointed tax schedule Tm(y1, y2) = T̃m(y1) + T̃m(y2) and slightly perturb it by in-

troducing jointness. Specifically, increase the level of taxes by some amount ϵ for all couples

whose productivities satisfy min{w1, w2} > t and adjust the lump sum component of the tax

schedule to satisfy the government budget constraint. Such perturbation increases marginal

taxes for all individuals on the boundary of orthant {w : w > (t, t)} by dτ . Jointness is positive

if dτ > 0 and negative if dτ < 0. Equivalently, this perturbation can be described as increasing

tax rates on earnings in the interval [y (t) , y (t) + y′(t)dt] by dτ .
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This perturbation has redistributory benefits and distortionary costs. Positive jointness

increases taxes for the richest couples, those located in the {w : w > (t, t)} orthant, and redis-

tributes them to an average couple. Thus, the redistributory benefits are given by

B = ∇y(t)dtdτ

∫ ∞

t

∫ ∞

t
(1 − αm(w))f(w)dw.

The distortionary costs arise because couples on the interior boundary of {w : w > (t, t)}
reduce their earnings due to higher tax rates. To calculate these costs, observe that, since we

started with a disjointed tax schedule, the reduction in earnings of every distorted individual

equals to ∆dτ , where ∆ = γty′(t)/(1 − ∂
∂y T̃

m (y (t))).17 There are 2g(t) Pr(w−i ≥ t|wi = t)dt

of distorted individuals. Therefore, the total cost of distortions is

C = y′ (t) dtdτγt2g(t) Pr(w−i ≥ t|wi = t)

∂
∂y T̃

m(y(t))

1 − ∂
∂y T̃

m(y(t))
.

The net welfare effect of introducing jointness is the difference between benefits and costs:

B− C = y′(t)dtdτ Pr (w ≥ (t, t))× (31)

×

(1 − E [αm|w ≥ (t, t)]) − 2Pr(w−i ≥ t) Pr(wj ≥ t|wi = t)

Pr(w−i ≥ t, wi ≥ t)︸ ︷︷ ︸
=1/B(t)

tg(t)

1 −G(t)︸ ︷︷ ︸
=θ(t)

γ

∂
∂y T̃

m(y(t))

1 − ∂
∂y T̃

m(y(t))

 .
Formula (31) applies to an arbitrary separable tax schedule. To see the connection to

equation (30), evaluate (31) at the optimal separable tax, T̃m,∗. While we study such taxes

formally in Section 5.9, it is easy to use perturbational arguments to show that T̃m,∗ must

satisfy
∂
∂y T̃

m,∗(y(t))

1 − ∂
∂y T̃

m,∗(y(t))
=

1 − E [αm|wi ≥ t]

γθ (t)
. (32)

Substitute equation (32) into (31) and re-arrange to obtain that B − C is proportional to

A×B − 1. Thus, jointness is positive if and only if A×B ≥ 1, as shown in equation (30).

We now turn to understanding properties of A and B. First, observe that if productivities

are independent then A(t) = 2 and B(t) = 1/2 for all t, which implies J(t) = 0. This

is the average version of the result shown in Lemma 3 that optimal jointness is zero when

productivities are independent. For positively dependent distributions, A ≤ 2 and B ≥ 1/2,

so that dependence both decreases benefits of better targeting taxes and costs of distortions

17To show this result, differentiate the optimality condition 1− ∂
∂y

T̃m (y (w)) = (y (w))
1/γ−1 w−1/γ .
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from jointness. Therefore, whether optimal average jointness is positive or negative depends

on which of these effects dominates.

To get some intuition for the more general result consider, first the case when F is a bi-

variant log-normal distribution with correlation of log productivities ρ > 0. It is easy to see

that for log-normal distribution both E [αm|w ≥ (t, t)] and E [αm|wi ≥ t] converge to α(∞) :=

limt→∞ α(t). This implies that benefits from better targeting taxes disappear, limt→∞A(t) =

1. At the same time, direct calculations show that limt→∞B(t) = 1+ρ
2 < 1. Therefore,

A(t) × B(t) is less than one for large t and optimal average jointness is negative for high-

earning couples.

This result carries out to many other joint distributions used in applied work. Consider

limits A(∞) := limt→∞A(t) and B(∞) := limt→∞B(t). Let F (·|∞) denote the limit of F (·|t)
as t→ ∞ in the weak convergence sense. Taking the limit of A(t) we obtain

A(∞) =
1 − 1

2α (∞) − 1
2α (∞)

1 − 1
2α (∞) − 1

2

∫
α(w)F (dw|∞)

. (33)

It is immediate to see that if F (·|∞) strictly dominates (in first order stochastic dominance

sense) the unconditional distribution of productivities G(·) then A(∞) < 2; moreover, if F (·|∞)

is degenerate, in the sense that F (w|∞) = 0 for all w, then A(∞) = 1.

To find the limit of B(t), use the L’Hopital’s rule to show that

B(∞) = κ := lim
t→∞

ln Pr(w1 ≥ t)

ln Pr(w1, w2 ≥ t)
.

Statistics κ is extensively studied in the theory of extreme values. It measures the speed of

convergence to asymptotic right-tail independence and its values are known for many commonly

used joint distributions.18 A common way to generate joint distributions in applied work is by

using parametric families of copulas. Gaussian copula (which generalizes correlation properties

of a bi-variant normal distribution to distributions with arbitrary marginals, and includes bi-

variant log-normal distributions as a special case) has κ = (1 + ρ)/2. Many other commonly

18Recall (see, e.g., Nelsen (2006)) that a symmetric distribution is right-tail independent if limt→∞ Pr(w−i ≥
t|wi ≥ t) = 0. Intuitively, tail-independent distributions rule out asymptotic emergence of mass points on the
45 degree line in the (w1, w2) space. Ledford and Tawn (1996, 1998) showed that under weak conditions, the
right-tail behavior of a symmetric distribution could be written as

Pr(w1 ≥ t, w2 ≥ t) ∼ L(t) · (Pr(wi ≥ t))1/κ as t→ ∞,

where L is some function such that L
(
G−1

(
e−1/t

))
is “slowly varying”, which is a certain generalization of

functions that converge as t → ∞. As can be seen from the above expression, larger values of κ ∈ [1/2, 1)
mean slower convergence to independence. Coles et al. (1999); Heffernan (2000); Hua and Joe (2014) discuss
the theoretical properties and empirical estimation of these statistics. Hua and Joe (2011, 2014) report values
of κ for a large number of copulas.
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used families of copulas, such as FGM, Pareto, Frank, Clayton, Ali-Mikhail-Haq, have κ = 1/2.

We can summarize this discussion in the following lemma.

Lemma 7. Optimal average jointness is negative at the top, in the sense that limt→∞ J (t) < 0,

if either (i) κ = 1
2 and F (·|∞) >FOSD G(·), or (ii) κ < 1 and F (·|∞) is degenerate.

All copulas mention in the previous paragraph satisfy conditions of this lemma as long as

their correlation parameters are strictly positive (see appendix for details).

To analyze jointness at the bottom, it is more insight to use not equation (30) but rather

J (t) ≤ 0 ⇐⇒ A(t) ×B(t) ≥ 1 (34)

where

A(t) :=
E [αm|w ≤ (t, t)] − 1

E [αm|wi ≤ t] − 1
, B(t) :=

Pr(wj ≤ t, wi ≤ t)

2 Pr(w−i ≤ t|wi = t)
.

This equation can be obtained by deriving expression for E
[
λm,∗
i |wi = t, w−i ≤ t

]
by analogy

with (29). Term A in this expression captures the benefits of better targeting transfers to the

poorest couples using jointness; term B captures additional distortions from this targeting.

Equation (34) appears similar to (30), but it has one important difference. While positive

jointness helps redistribution by targeting taxes to the richest couples, negative jointness helps

redistribution by targeting transfers to the poorest couples. Given this observation, it follows

that conclusions of Lemma 7 flip sign once it is extended to the poorest couples. In particular,

let κ := limt→0
lnPr(w1≤t)

lnPr(w1,w2≤t) be the parameter capturing the speed of convergence to the left-tail

independence. We have

Lemma 8. Optimal average jointness is positive at the bottom, in the sense that limt→0 J (t) >

0, if either (i) κ = 1
2 and F (·|0) <FOSD G(·), or (ii) κ < 1 and F (0|0) = 1.

5 Extensions

In Section 2 we presented the simplest model of taxation of single and married households,

and developed techniques to characterize properties of optimal taxes in this model. While a

natural starting point, that model is stylized. It abstracts from home production, economies

of scale in marriage, extensive margin in labor supply decisions, bargaining over allocation of

resources within couples, selection into marriage, gender differences. Moreover, a policy maker

may have different objective from the benchmark case. For example, the planner may have

inherent preference for single or married households, or may want to use simpler taxes that

those implied by the unrestricted optimal tax schedule.
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The goal of this section is to show how the approach that we developed in Section 3.3 can

be adapted to study such extensions. Since the number of possible extensions is large, we

cannot discuss them in-depth within confines of one paper. For this reason we organize this

section as follows. Each subsection contains an extension of our benchmark model in one of the

directions mentions above. To save space, we skip derivations and focus in each subsection on

only one or two new insights that emerge from that extension. Appendix contains derivations

and additional details.

5.1 Social weights on single and married

In this section, we allow the planner to have richer preferences than those we considered in

the benchmark economy. The purpose of this extension is two-fold. First, this is an important

question in its own right as a policymaker may evaluate social welfare differently from the way

we considered in Section 2. Second, several other extensions resemble, in a reduced form, the

social planner with such weights. Throughout this section, we assume that α(w) is a Pareto

weight on a single household with productivity w, with normalization
∫
α(w)G(dw) = 1.

Consider first the case when the planner uses Pareto weights kαm (w) for couple w, where

k > 0 is a scalar and αm as given in (1). The planner has preference for married individuals

when k > 1 and single individuals when k < 1. Proceeding as in Section 3.3, it is easy to

derive formulas for the optimal average distortions in this economy:

λs,∗(t) =
1 − E [α|w ≥ t]

γθ (t)

1

1 − µ∗ + µ∗k
, (35)

E
[
λm,∗
i |wi = t

]
=

1 − E [αm|wi ≥ t]

γθ (t)

k

1 − µ∗ + µ∗k
. (36)

These formulas are almost the same as (22) and (25) except for terms 1
1−µ∗+µ∗k and k

1−µ∗+µ∗k .

It is insightful to understand the economic intuition behind these terms and their implications.

For concreteness, suppose that k > 1. It is immediate to verify that in this case married

persons face higher distortions than in the benchmark economy while single persons face lower

distortions. This result seems surprising. Why is it optimal for the planner to increase dis-

tortions for those households that she values more? The answer to this is that by increasing

redistribution (and, hence, distortions) for more preferred households and decreasing it for

the less preferred ones the social planner can redistribute resources with smaller behavioral

responses. To understand why this is the case, suppose that the planer merely increases taxes

lump-sum by $1 on single households and returns proceeds lump-sum to married households.

This policy reform would incentivize some hitherto single individuals to get married. This is
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costly both because these individuals have non-pecuniary preference to stay single, and be-

cause it reduces the amount of transfers available for married couples. The planner can reduce

this behavioral response by simultaneously increasing redistribution within married households

and reducing redistribution within single households, which makes it more attractive for the

marginal individual to stay single.

Consider now implications of non-separable Pareto weights for couples. Suppose that the

planner assigns a weight αm(w) ̸= α(w1)+α(w2)
2 to a married couple w. To separate the eco-

nomics of non-separable weights on couples from desire to redistribute between married and

single, we focus on the case
∫
αm(w)F (dw) = 1.

It is easy to see that none of the derivations in formula (24) required separability of αm and,

therefore, this formula as well as its implications, such as equations (25), (27) or (29), remain

unchanged. We now generalize the comparative statics results that we presented in Lemmas

4, 6, 7, and 8. To state those results, we want to maintain the assumption that average Pareto

weight on married persons is the same as for single even as we change, for example, the degree

of dependence. We say that αm,b ∼ αm,a if αm,a, αm,b are the same up to the normalization

constant, that is if the ratio αm,b (w) /αm,a (w) is independent of w.

Corollary 1. Consider economies, a and b s.t.
∫
αm,b(w)F b(dw) =

∫
αm,a(w)F a(dw) = 1.

(a). Suppose F a = F b. Conclusions of Lemma 5 hold provided that αm,b is more redistrib-

utory than αm,a in the multivariate likelihood ratio order sense,19 and conclusions of Lemma

6 hold for (F a, αm,a) provided that αm,a(0, w) > 1 for all w.

(b) Suppose F a ≤PQD F b, αm,b ∼ αm,a, and αm,a is supermodular. Then Lemma 7 holds

for (F a, αm,a), and Lemma 4 holds at the top, in the sense that limt→∞
Eb
[
λm,b,∗
i |wi=t

]
Ea
[
λm,a,∗
i |wi=t

] ≥ 1.

(c). Suppose F a ≤PQD F b, αm,b ∼ αm,a, and αm,a is submodular. Then Lemma 8 holds

for (F a, αm,a), and Lemma 4 holds at the bottom, in the sense that limt→0
Eb
[
λm,b,∗
i |wi=t

]
Ea
[
λm,a,∗
i |wi=t

] ≥ 1.

Part (a) of this proposition provides a way to compare redistributiveness of Pareto weights

in general, bi-variate settings. Parts (b) and (c) extend results about jointness and average

optimal distortions for non-separable weights αm. The cross-partial derivatives of αm play an

important role. When these derivatives are positive (so that αm are supermodular), the planer

has a stronger desire to extract resources from couples in orthants {w : w > t} with large t,

19αm,b dominates αm,a in the multivariate likelihood ratio order if αm,a (w′)αm,b (w′′) ≥
αm,b (w′ ∨w′′)αm,a (w′ ∧w′′) for all w′,w′′, and it is a generalization of the uni-variant likelihood ratio order
that we used in Lemma 5. Under auxiliary regularity assumptions on either αm,a or αm,b it is equivalent to the
statement that αm,b (w) /αm,a (w) is decreasing in w. See Chapter 6.E of Shaked and Shanthikumar (2007) for
discussion and proofs.
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relative to the benchmark economy case. This amplifies the mechanisms behind results in

Lemma 4 and 7 for high-earners, but has ambiguous effect for low-earners. When the cross-

partial derivatives of αm are negative (so that αm are submodular), the planner has a stronger

desire to transfer resources to couples in orthants {w : w < t} with small t. This amplifies the

mechanisms emphasized in the previous section for lower earners.

Parts (b) and (c) of this corollary are related to findings of Kleven et al. (2007). Those

authors consider optimal jointness in the economy in which productivities are independent,

all households are married, and social welfare is given by
∫
W (vm) dF , where W is the social

welfare function. They prove that in that economy the optimal jointess is negative (positive) if

the third derivative of W is positive (negative). The same result can shown in our settings in

terms of modularity of αm: the optimal jointness is negative (positive) if αm is supermodular

(submodular) and matching is random (see appendix for the proof). Corollary 1 implies that

even small degree of dependence can break this result. Suppose for concreteness that αm is

supermodular and F is log-normal with correlation ρ. The optimal jointness is negative for all

w if productivities are independent, ρ = 0. However, conditions of Lemma 8 are satisfied for

any positive correlation ρ > 0, so that optimal jointness at the bottom is strictly positive for

any degree dependence.

5.2 Bargaining and allocation of resources within couples

Married couples in our benchmark economy act as a single unit whereby they maximize their

joint surplus and split it equally between spouses. A sizable literature in labor economics (see,

e.g., a handbook chapter by Almas et al. (2023) for an overview) has shown that resource

division within families often departs from this idealized view. For example, a spouse with

higher income often have greater control over surplus division. In this section, we study how

optimal taxation is affected.

We consider a simple model of bargaining within households in the spirit of Manser and

Brown (1980) and McElroy and Horney (1981). In particular, we modify the description of

Stages 2 and 3 of our benchmark model and assume that married couples bargain over surplus

division after their productivities w are realized but before they supply labor on the market.

When bargaining, each spouse uses the threat of a divorce, at a personal cost ϱ > 0, in which

case both spouses become single and cannot remarry. Thus, the outside option of spouse i

with productivity wi is vs(wi) − ϱ. Cost ϱ is assumed to be sufficiently high so that it is not

socially efficient for couples to get divorced. Using symmetric Nash bargaining as a solution
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concept, the utility of a married person can be shown to be equal to

Um (wi|w−i) =
1

2
vm(w) +

vs(wi) − vs(w−i)

2
.

Since vs(·) is increasing, this equation shows that a more productive spouse gets a bigger share

of family surplus, consistent with the motivation given in the beginning of this section.

Our approach from Section 3.3 can be adapted to this economy with minimal changes. It

is easy to show that optimal average distortions for married persons are given by (25), while

distortions for single persons satisfy

λs,∗(t) =
1 − E [α|w ≥ t]

γθ (t)
+

µ∗

1 − µ∗
E [α(w−i) − α(wi)|wi ≥ t]

γθ (t)
.

The first term on the right hand side is the same as (22), the second term is new and it

captures the effect of bargaining. This term is positive when F is positively dependent so that

bargaining over marital surplus increases distortions for single persons and leaves distortions

for married persons unchanged.

To understand the intuition for this result, observe that bargaining reduces the amount

of redistribution that occurs within couples, relative to the benchmark economy. While the

planner can compensate for this reduction by providing more redistribution for married house-

holds via Tm, a more efficient response is to increase redistribution for single households via

T s. This decreases inequality both among single households, directly through tax system,

and among married households, indirectly by making spouses’ outside options and, therefore,

surplus division more equal.

5.3 Optimality of taxation of family earnings

In many countries, notably the U.S., married couples pay taxes based on their total family

earnings, i.e., the tax function Tm takes form Tm (y1, y2) = T̃m (y1 + y2). We call this family-

earnings based taxation. In this section, we explore conditions under which such form of

taxation is optimal.

Let Y = y1 + y2 be family earnings. To motivate our approach, observe that if couple w

faces a family earnings-based tax then one can write their optimality conditions as

Y (w)1−γ(
1 − ∂

∂Y T̃
m (Y (w))

)γ =
(
w

1/(1−γ)
1 + w

1/(1−γ)
2

)1−γ
:= R (w) .

This equation shows that both spouses in all couples w for whom R (w) = r face the same

marginal tax. Thus, the question whether the unrestricted tax system is family-earnings based

can be reformulated as whether optimal distortions only depend on R(w).
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It will be convenient to change coordinates to study this question. Recall function I (w) =

w2/w1 that we defined in Section 3.3. R and I allow us to change coordinates of the space

describing joint productivities of couples from w to (r, ι) = (R (w) , I (w)). These coordinates

have a natural economic interpretation. Coordinate r is a measure of total family earnings,

while ι captures how family earnings are allocated between the two spouses. Let F̃ (r, ι) be the

distribution of productivities in these new coordinates, F̃ (·|ι) the distribution of r conditional

on a given value of ι, and f̃ (·|ι) its density. Finally, let Gr(r) be the marginal distribution of

r and θr(r) be its tail statistics.

It is clear from Lemma 9 that family-earnings based taxation is unlikely to be optimal

if weights αm on couples are additively separable in w. To make analysis interesting, we

consider arbitrary weights αm that satisfy
∫
αm(w)F (dw) = 1. We say that αm is measurable

only w.r.t. r if it can be written in the form αm (R (w)). Using our general formula (24), we

can prove the following result.

Lemma 9. Let λ̃(r, ι) := 1−E[αm|R≥r,I=ι]

γrf̃(r|ι) .

(a). The optimal tax is family-earnings based if and only if λ̃(r, ι) is independent of ι.

(b). Suppose that α is measurable only w.r.t. r, and r and ι are independent. Then, the

optimal tax system is family earnings-based and it satisfies

λm,∗
2 (w) = λm,∗

1 (w) =
1 − E [αm|R ≥ r]

γθr(r)
for all w s.t. R(w) = r.

(c). Consider any two economies, a and b, that are identical except distribution F̃ , and

weights αm and suppose that social weights for couples are only measurable w.r.t. r. If

F̃ a ≤PQD F̃ b, αm,b ∼ αm,a, then Eb
[
λm,b,∗
2 − λm,b,∗

1 |I = ι
]
≥ Ea

[
λm,a,∗
2 − λm,a,∗

1 |I = ι
]
for

all ι.

Part (a) of this lemma provides necessary and sufficient conditions, summarized by function

λ̃, under which family-earnings based taxation is optimal. As can be expected, these conditions

are knife-edge and not very informative in general. Part (b) provides one specific case that has

a natural economic interpretation. Family-earnings based taxation is optimal if the planner

values equally all couples with the same r and, in addition, if distribution F̃ is such that r

is independent of ι. The interpretation of this result is that family-earnings based taxation

is optimal if the planner has inherent preference for such taxation and there is no correlation

between family earnings and the share earned by the primary earner. Note that the optimal

distortions in this case closely resemble equation (22), except that distortions are captured

by statistics θr rather than θ. Pure family-earnings based taxation is suboptimal for such a
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planner when r and ι are correlated because the planner can exploit information contained in

ι to provide better redistribution across couples with different r. Part (c) of Lemma 9 sheds

light on how this can be done by providing comparative statistics with respect to the degree

of dependence in (r, ι).

Note that parts (b) and (c) of Lemma 9 have close parallels to our discussion of conditions

under which separable taxation is optimal in the benchmark economy. In that economy, each

individual with productivity w is weighted with an individual-specific weight α(w) that does

not depend on whether or whom this individual marries. Thus, the planner has inherent

preference for individual-earnings based taxation, so that taxes of one person do not depend

on earnings of their spouse. Despite such preference, individual-earnings based taxation was

generally suboptimal unless productivities w are independent.

5.4 Public goods and economies of scale in marriage

Married persons share costs of many goods that simultaneously provide benefits to both

spouses, from housing and child-rearing to Netflix subscriptions. In this section we explore

implications of these economies of scale for optimal taxation.

We model them as a simple public good. In particular, we assume that each person’s utility

is ϕ(cpr, cpub)− 1
γ l

γ , where ϕ is a constant returns to scale function, and cpr and cpub are private

and within-household public good. Without loss of generality, we set prices of both goods to

be equal to one, so that single and married households solve, respectively,

max
(cpr,cpub,y)

ϕ
(
cpr, cpub

)
− 1

γ

( y
w

)γ
s.t. cpr + cpub ≤ y − T s (y) , y ≥ 0,

max(
(cpri ,yi)

2

i=1
,cpub

)
2∑

i=1

(
ϕ
(
cpri , c

pub
)
− 1

γ

(
yi
wi

)γ)
s.t.

2∑
i=1

ci + cpub ≤
2∑

i=1

yi − Tm (y1, y2) ,y ≥ 0.

Since the same cpub enters utility of both spouses, marriage leads to efficiency gains in this

settings. The rest of the model is as in Section 2.

Consumption expenditures can be conveniently aggregated. Households’ maximization

problems can be written as

vs(w) := max
(C,y)

bsC − 1

γ

( y
w

)γ
s.t. C ≤ y − T s (y) , y ≥ 0,

vm(w) := max
(C,(yi)

2
i=1)

bmC − 1

γ

2∑
i=1

(
yi
wi

)γ

s.t. C ≤
2∑

i=1

yi − Tm (y1, y2) ,y ≥ 0.

where

bs := max
cpr+cpub=1

ϕ(cpr, cpub), bm := max
cpr+cpub=1

ϕ(cpr, 2cpub).
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It is easy to see that bm > bs when ϕ is strictly increasing in cpub so that the marginal utility

of total consumption expenditures C is greater for married persons due to economies of scale.

The analysis of this economy is very similar to the economy in considered in Section 5.1, in

which the planner had exogenously higher weight on married households. In particular, it is

easy to show that optimal distortions satisfy

λs,∗(t) =
1 − E [α|w ≥ t]

γθ (t)

(
1 − µ∗ + µ∗

bs

bm

)
, (37)

E
[
λm,∗
i

∣∣∣wi = t
]

=
1 − E [αm|wi ≥ t]

γθ (t)

(
1 − µ∗ + µ∗

bs

bm

)
. (38)

The intuition for this result is the same that we discussed in Section 5.1.

5.5 Home production and division of labor within families

Household consumption includes not only goods and services purchased in the marketplace

but also those produced at home. This requires households to decide how to allocate effort

between home and market work and, in two-person households, how to divide these tasks

between spouses. In this section, we incorporate home production and division of labor in our

economy and consider their implications for optimal taxation.

Let d be consumption of the home good and x be the effort to produce it. We assume that

preferences of each individual are given by c+ 1
1−σd

1−σ−γ (lp + xp)
1/(γp). For single households,

the production technology for home good is Ds(x) = x and their maximization problem is

max
(c,y,x)

x1−σ

1 − σ
+ c− γ

(( y
w

)p
+ xp

)1/(γp)
s.t. c ≤ y − T s (y) , y ≥ 0.

For married households, home production technology is Dm(x) =
(
x

1/q
1 + x

1/q
2

)q
and we assume

that home good as a public good. Married households solve

max
(c,y,x)

2

(
x

1/q
1 + x

1/q
2

)q(1−σ)

1 − σ
+

2∑
i=1

(
ci − γ

((
yi
wi

)p

+ xpi

)1/(γp)
)
s.t.

2∑
i=1

ci ≤
2∑

i=1

yi − Tm (y) ,

where y,x ≥ 0. Parameter p ∈ (1, 1/γ) captures the elasticity of substitution between hours at

home and at work, with p→ 1 represents the limit of perfect substitution. Parameter σ ∈ [0, 1)

captures curvature in the utility of consumption of the home produced good. Parameter q ∈
[1, 1/(1−σ)] allows home produced goods by the two married spouses to be imperfect substitutes.

Restrictions on parameters ensures that all choices are interior and we can abstract from corner

solutions.
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As in the model in Section 5.4, aggregation simplifies analysis. In particular, define func-

tions N s (l) and Nm (l) by

N s(l) := min
x≥0

− x1−σ

1 − σ
+γ (lp + xp)

1/(γp) , Nm(l) := min
x≥0

−2

(∑2
i=1 x

1/q
i

)q(1−σ)

1 − σ
+γ

2∑
i=1

(lpi + xpi )
1/(γp)

.

Using these definitions, single and married household problems can be written as

vs(w) := max
(c,y)

c−N s
( y
w

)
s.t. c ≤ y − T s (y) , y ≥ 0,

vm(w) := max
(C,y)

C −Nm

(
y1
w1
,
y2
w2

)
s.t. C ≤

2∑
i=1

yi − Tm (y1, y2) ,y ≥ 0.

This model is now identical to the benchmark economy except that the disutility of labor is

given by general functions N s and Nm. The key economic difference from the benchmark

environment is that elasticities of labor supply at work are no longer constant.

We now describe properties of the solution of this model. Recall that in our benchmark

economy, the elasticity of labor supply e is constant, and the relationship between the elasticity

parameter γ and e is given by γ = (1 + 1/e)−1. Consider now preferences for single households.

The elasticity of their labor supply at labor level l is e(l) = ∂Ns(l)/∂l
l·∂2Ns(l)/∂l2

, and define Γs(l) by

Γs(l) := (1 + 1/e(l))−1 ,

which generalizes γ in the case when elasticity is not constant. Similarly, for couples define a

2 × 2 matrix Γm(l) as

Γm (l) :=

 1 +
l1·∂2Nm(l)/∂l21
∂Nm(l)/∂l1

l2·∂2Nm(l)/∂l1∂l2
∂Nm(l)/∂l1

l1·∂2Nm(l)/∂l1∂l2
∂Nm(l)/∂l2

1 +
l2·∂2Nm(l)/∂l22
∂Nm(l)/∂l2

−1

.

With a bit of algebra, it can be shown that Γm =
(
1 + E−1

)−1
, where E is the 2 × 2 matrix

of all (cross-)elasticities of l with respect to after-tax wage rates for both spouses. We use Γm
ij

to denote the ijth element of matrix Γm.

Using these definitions, we can study optimal distortions in this economy. We start with

single households. Direct adaptation of our approach yields the formula

λs,∗(t) =
1 − E [α|w ≥ t]

Γs (y∗(t)/t) θ (t)
. (39)

This is a version of the well-known Diamond’s ABC formula, who also considered the case

of non-constant elasticity of labor supply. The intuition and interpretation for it exactly the

same that we gave after equation (22).

32



Equation (39) holds for any general disutility of labor and does not depend on home

production per se. The home production structure contains additional insights about how

single persons allocate effort at work and at home. Consider a person with productivity t who

faces marginal taxes that are bounded away from 1 from above. As t increases, the opportunity

cost of working at home increases too, and the person starts to allocate more hours at work.

We have liml→∞ Γs (l) = γ and, therefore, we obtain

lim
t→∞

λs,∗(t) = lim
t→∞

1 − E [α(w)|w ≥ t]

γθ (t)
. (40)

This result shows that optimal distortions for high productive individuals are determined by

the same parameters with and without home production.

We now turn to optimal distortions for married persons. The Coarea formula (24) adapted

to our settings implies

E
[
Γm
ii λ

m,∗
i + Γm

ijλ
m,∗
j |wi = t

]
=

1 − E [αm|wi ≥ t]

θ (t)
. (41)

This equation generalizes equation (25) for the case when labor supply elasticities are inter-

dependent between spouses. The planner now needs to take into account that a higher marginal

tax on person i not only affects labor supply of that person (captured by Γm
ii in this formula)

but also the labor supply of their spouse (captured by Γm
ij ).

Equation (41), just like equation (39), holds for arbitrary joint utility of labor supply

Nm(l). Home production has additional implications. If a spouse i is more productive, they

supply more effort at work and less at home. This diminishes the importance of home pro-

duction and wages of the other spouse. In particular, we have limli→∞ Γm
ii (li, lj) = γ and

limli→∞ Γm
ij (li, lj) = 0 for all lj , which implies that

lim
t→∞

E
[
λm,∗
i |wi = t

]
= lim

t→∞
1 − E [αm|wi ≥ t]

γθ (t)
. (42)

This formula shows that optimal distortions for both single and married high-earners remain

the same as in the benchmark economy and many of the comparative statics results derived in

Section 3.3. Furthermore, the analysis of jointness in the right tail proceeds with no changes,

extending the results of Lemma 7 to this economy.

5.6 Extensive margin

In our benchmark economy, all labor supply adjustments are done along the intensive margin.

In this section, we briefly discuss implications of also adding the extensive margin to our

analysis. We consider a simple extension of our benchmark environment by assuming that any
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person who supplies li > 0 incurs an additional disutility cost ϱ > 0. We focus on the case of

random matching, since it is easy to fully characterize the optimum in this case and highlight

the role that extensive margin plays in the analysis.

Lemma 10. In the model with extensive margin and random matching, optimal distortions

for single persons are given by (22), and for married are as given in Lemma 3. There are

productivity cut-offs ws, wm for single and married, with ws > wm, so that a person works

positive hours if and only if their productivity is above those cut-offs.

The optimal tax formulas remain the same as in the economy with only intensive margin.

The only difference is that now individuals with low productivity choose not to supply any

labor and exit employment. Single individuals face higher distortions under the optimal system

than married persons and, therefore, are more likely to choose not to work.

5.7 Selection into marriage

In our benchmark economy the probability of getting married is the same for all persons. In

the data marriage rates are correlated with various indicators of person’s socio-economic status

and their earnings. In this section, we extend our model to incorporate such heterogeneous

selection into marriages.

The simplest way to introduce correlation of marriage rates and productivities in our econ-

omy is to switch the order of Stages 1 and 2. That is, assume that individuals first observes

singles q about their productivity and then decide whether to enter the marriage market. The

rest of the set up is as in Section 2.

To highlight the key differences that this set up introduces we assume that there are two

signals, qh and ql that occur with equal probability. Let Hh and Hl be distribution of pro-

ductivities of individuals who receive signals qh and ql, and µh and µl be their marriage rates.

The average marriage rate µ satisfies µ = 1
2 (µh + µl).

If signals q are correlated with w, marriage rates will differ across w. Let Gs and Gm be

distributions of productivities among single and married persons, and θs (t) and θm (t) denote

their tail statistics defined as in (23). Following the same steps as in baseline economy, one

can show that the optimal distortions for single and married persons satisfy

λs,∗(t) =
1 − Es [α|wi ≥ t]

γθs (t)
+

1

1 − µ∗
δh(1 −Hh(t)) + δl(1 −Hl(t))

γθs (t)
,

E[λm,∗
i |wi = t] =

1 − Em [αm|wi ≥ t]

γθm (t)
− 1

µ∗
δh(1 −Hh(t)) + δl(1 −Hl(t))

γθm (t)
,

where δh and δl are the Lagrange multipliers on the two analogues of equation (6), for qh and

ql. These multipliers must satisfy µ∗δh + (1 − µ∗) δl = 0. Examining these equations reveals
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that the optimal tax formula consists of two terms. The first terms on the right hand sides

of of both equations are the same as (22) and (25), except now they take into account that

tail statistics θ summarizing marginal distribution of productivities differs between single and

married individuals. The second terms on the right hand side of these equations capture the

additional effect from responses of marriages of persons with different productivities to taxes.

The planner recognizes that taxes affect these marriage decisions and takes these behavioral

responses into account when choosing tax rates. These terms take opposite signs for single

and married persons and have economic intuition similar to the implications of exogenously

different Pareto weights in Section 5.1 or public goods in Section 5.4.

5.8 Gender differences

Family economics literature has documented systematic differences in earnings among males

and females. In this section, we incorporate this heterogeneity in our model of optimal taxation.

We assume that there are two fixed genders, M and F , each of measure one half, and

that married couples must consist of one spouse of each gender. Persons M and F draw their

productivities from distributions GM and GF , with tail statistics θM and θF . Spouses of each

gender are the same in every other respect20 and description of the matching process is as in

Section 2 with one modification. Since M and F ex-ante different, there is no reason to expect

that the same number of males and females will arrive on the marriage market. To clear this

market, we return individuals with highest values of ε of the “surplus” gender on the marriage

market back to the singlehood.

We assume that social welfare function is

W :=
1

2

∫
αM (w)E [UM |w]GM (dw) +

1

2

∫
αF (w)E [UF |w]GF (dw),

where weights αM and αF are not necessarily the same, and set
∫
αj(w)Gj(dw) = 1 for

j = M,F . Let αm (wM , wF ) := 1
2αM (wM ) + 1

2αF (wF ). For now we consider optimal tax

system that can use gender as a marker to tax liability. This implies that single persons face

taxes that differ by gender, and taxes of married couples depends not only on vector of earnings

but also on the genders of earners. In the next section, we reconsider this question by imposing

gender-neutrality on the tax system.

Our analysis in Section 3.3 extends to this economy with minimal changes. In particular,

20Empirical estimates of labor supply elasticities often differ between genders. Those differences emerge
endogenously if we incorporate home production along the lines of Section 5.5. It is also trivial to extend our
analysis to the case when genders differ in Φ and γ.
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that the optimal distortions satisfy

λs,∗j (t) =
1 − E[αj |wj ≥ t]

γθj(t)
, E[λm,∗

j |wj = t] =
1 − E [αm|wj ≥ t]

γθj(t)
for j = M,F.

These formulas is a direct generalization of our results in Section 3.3 and Sections 5.1, with all

the intuition as described in those sections.

5.9 Optimal restricted taxation

One observation about the optimal unrestricted taxes in Section 5.8 is that they depend on

the gender of the tax payer. This result is not surprising. The usual tagging logic (see Akerlof

(1978)) indicates that it is generally optimal to use any observable tag, such as gender, if it

is correlated with unobservable productivities to reduce costs of taxation. It is natural to ask

how optimal taxes should look like when a policy maker does not want to use such taxes. This

motivates our analysis of optimal restricted taxes.

In this section, we use the model of Section 5.8 and consider optimal taxation when

taxes have additional restrictions. We focus on three types of restricted tax forms that are

usually used in practice: (i) gender-neutral taxes, i.e., taxes that satisfy T s
M (y) = T s

F (y)

and Tm(y1, y2) = Tm(y2, y1) for all y1, y2, (ii) individual-earnings based taxation of cou-

ples, Tm (y1, y2) = T̃m (y1) + T̃m (y2), and (iii) family-earnings based taxation of couples,

Tm(y1, y2) = T̃m(y1 + y2). Note that couples taxation is automatically gender-neutral in (ii)

and (iii).

Incorporating these restrictions is fairly easy into our mechanism design problem. Re-

striction (i) is equivalent to requiring that vsM = vsF and vm is symmetric; restriction (ii) is

equivalent to requiring that vm is symmetric and additively separable in w1,w2; and restric-

tion (iii) is equivalent to imposing that vm is measurable only w.r.t. r. It turns out that the

optimal restricted taxes is easy to characterize and there is a remarkably close connection to

the optimal unrestricted taxes.

Lemma 11. Let ωj(t) :=
gj(t)

gM (t)+gF (t) for j = M,F .

(a) The optimal distortions in the gender-neutral tax system, λs,nrl,∗i , λm,nrl,∗
i , satisfy

λs,nrl,∗(t) =
∑

j=M,F

ωj(t)λ
s,∗
j (t), E[λm,nrl,∗

i |wi = t] =
∑

j=M,F

ωj(t)E[λm,∗
j |wj = t];

(b) The optimal distortions in the individual-earnings based taxation of couples, λm,ind,∗,

satisfy

λm,ind,∗(t) =
∑

j=M,F

ωj(t)E[λm,∗
j |wj = t];
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(c) The optimal distortions in the family-earnings based taxation of couples, λm,fam,∗, sat-

isfy

λm,fam,∗(r) = E[λm,∗
j |R = r] =

1 − E [αm|R ≥ r]

γθr(r)
for j ∈ {M,F} .

This lemma provides closed-form expressions for optimal distortions of all three restricted

tax systems. It also shows a remarkable close connection between optimal restricted and

unrestricted taxation. In all three cases, the distortions under optimal restricted taxes are

equal, on average, to the distortions under optimal unrestricted taxes, where averages are

taken along dimensions that restricted taxes cannot use. The unrestricted and restricted

optimal taxes are chosen to equalize benefits from redistribution to costs of distortions. The

main difference is that the unrestricted planner can allocates those costs and benefits more

efficiently for each couple while restricted planners can do that only on average.

6 Quantitative analysis

In this section, we illustrate theoretical implications of our analysis using a quantitative model.

6.1 Calibration

To calibrate our model, we use data on earnings of couples from 2020 CPS survey. We restrict

attention to couples in which both individuals are between 25 and 65 years old and worked at

least 20 weeks in 2019. We invert the joint distribution of earnings to obtain the distribution

of productivities. In order to do so, we assume that the environment is symmetric and set

γ = 1/4, so that the implied labor supply elasticity of 1/3 is the mid-range of values considered

by Diamond (1998). Following Guner et al. (2014) and Heathcote et al. (2017), who argue

that the U.S. tax schedule is such that family post-tax earnings are approximately a log-

linear function of family pre-tax earnings, we assume that households in the data face taxes

of the form T (y1, y2) = (y1 + y2) − ν (y1 + y2)
1−τ , where τ and ν are parameters. We refer to

this functional form as the HSV tax schedule. With such taxes, the relationship between an

observed vector of earnings y and an unobserved vector of productivities w is given by

w
1/γ
i =

1

(1 − τ) ν
y
1/γ−1
i (y1 + y2)

τ . (43)

To invert this mapping, we use the value of (τ, ν) that Guner et al. (2014) estimate for the

U.S. married couples.

We choose a parsimonious representation of the marginal and joint distribution of w. Con-

sistent with earlier literature (e.g., Badel et al. (2020) or Golosov et al. (2016)), we find that
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the marginal distribution of productivities G can be well approximated by a Pareto lognormal

(PLN) distribution.21 We choose its three parameters (η, σ, a) to match the mean level of pro-

ductivity, its Gini coefficient, and the tail parameter. These three moments can be expressed

analytically in terms of parameters (η, σ, a) so that these parameters can be obtained by a

simple inversion of those equations (see appendix for the details). Panel (a) of Figure 1 shows

the empirical and calibrated distribution G.

(a) Marginal distributions, G(t) (b) Loci of copulas quantiles (u1, u2) satisfying C(u1, u2) = q
for q 2 {0.1, ..., 0.9}

(c) Left-tail statistics C(u,u)
u

(lines with markers) and
ln u

ln C(u,u)
(lines without markers)

(d) Right-tail statistics C(u,u)
u

(lines with markers) and
ln u

ln C(u,u)
(lines without markers)

-

-

Figure 1: Empirical and calibrated joint distributions of productivities

Our theory emphasizes several key statistics of the joint distribution F that determine

the optimal shape of taxes: the degree of dependence in productivities, right- and left-tail

(in)dependence, and the speeds of convergence κ, κ. In the data, both observed earnings and

backed-out productivities are positively dependent, with Kendell’s tau measure of dependence

for productivities equaling 0.21.22 The joint distribution appears to be both left- and right-tail

independent, but the rate of convergence to independence is fairly low. Panels (c) and (d)

21The PLN family was introduced in Colombi (1990) as as a model of the income distribution, and
since then, it has been used extensively in various studies. It is defined as G(t) = Φ

(
ln t−η

σ

)
−

t−a exp
(
aη + a2σ2/2

)
Φ
(

ln t−η−aσ2

σ

)
, where Φ is the standard normal distribution.

22Kendell’s tau is the standard measure of strength dependence of two variables (see Chapter 5 in Nelsen
(2006)). Kendell’s tau measure has an advantage over Pearson’s correlation coefficient because it is independent
of the marginal distributions. In our data, Pearson’s correlation coefficients of earnings and productivities are
0.21 and 0.25, respectively.
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Parameter Value Definition Target

γ 0.25
Measure of labor supply

elasticity
Elasticity of labor supply, 0.33

a 2.95 Pareto tail of PLN cdf
Pareto statistics at 99% of individual

productivities, 2.95

η -0.71
Location parameter of PLN

cdf
Mean individual productivity, 0.81

σ 0.40
Shape parameter of PLN

cdf
Gini of individual productivities, 0.31

ρ 0.33
Correlation parameter of

Gaussian copula

Kendell’s tau of spousal productivities,

0.21

Table 1: Calibrated parameters

illustrate this by plotting in dashed lines the value of the empirical copula23 C(u, u)/u for

difference percentiles of productivities (red line), and the value of lnu/ lnC(u, u) (blue lines).

Consistent with left tail-independence, C(u, u)/u approaches zero for low u; consistent with

the slow speed of convergence lnu/ lnC(u, u) remains much above 1/2. Panel (d) plots similar

statistics summary statistics for the right tails, using moments of the empirical survival copula.

We experimented with different families of copulas to capture these patterns and found

that the Gaussian copula fits the data very well. Its parameter ρ, when chosen to match

the Kendell’s tau dependence coefficient,24 also fits well the measures of left- and right-tail

dependence and speeds of convergence. This can be seen from panels (c) and (d) of Figure

1, where in solid lines we plot the counterparts of calibrated Gaussian copula of the empirical

objected plotted in dashed lines. Black dots show the speeds of convergence for the Gaussian

copula, κ = κ = 1+ρ
2 . Panel (b) of Figure 1 shows the “isoquants” of both empirical and

calibrated joint distribution, where each line plots, for a given q, all pairs (u1, u2) that satisfy

C(u1, u2) = q. Table 1 summarizes all our parameters and their empirical counterparts.

We want to make several remarks. If one were to assume that the HSV tax schedule applies

to individual rather than family earnings, then calibration of the unobservable distribution of

productivities using the observed distribution of earnings is particularly simple and transpar-

ent. If the joint distribution of earnings is PLN-Gaussian and individuals face HSV taxes,

then the joint distribution of productivities is also PLN-Gaussian. Moreover, the parameters

23Recall that any distribution F has corresponding functions C and C, called copula and survival copulas,
that satisfy C (G1 (t1) , G2 (t2)) = Pr (w ≤ t) and C (1−G1 (t1) , 1−G2 (t2)) = Pr (w ≥ t) for all t, respectively.
Conceptually, C (u1, u2) is the joint probability that the productivity of spouse 1 is in the uth

1 quantile of her
marginal distribution and the productivity of spouse 2 is in the uth

2 quantile. Copulas allow one to isolate
dependence properties of F from properties of marginal distributions G1, G2 in general settings.

24The relationship between Kendell’s tau and parameter ρ of the Gaussian copula is given by Kendell’s tau =
2 arcsin ρ

π
.
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of (η, σ, a, ρ) of this distribution of productivities can be expressed in closed form as functions

of mean, Gini, Pareto tail, and Kendell’s tau measures of the joint distribution of earnings, as

well as parameters (τ, ν) of the HSV tax function. Thus, the entire calibration can be done

using the moments of the raw data directly, sidestepping the need for the inversion described

in equation (43). The calibration approach we present in the text is more general and uses

a more realistic specification of the tax function. In any case, we tried both approaches and

obtained very similar results.

Secondly, in the appendix we show how the optimal taxes would change if the joint dis-

tribution were given by the FGM rather than the Gaussian copula, calibrated to match the

same Kendell’s tau coefficient. The calibrated FGM copula, like the Gaussian copula we use,

fits empirical isoquants reasonably well and is tail independent. However, it converges to tail

independence much faster, with κ, κ equal to 1
2 that are clearly rejected by our data. Thus,

comparing the results reported in the text for the Gaussian copula with those reported in the

appendix for the FGM copula highlights the role of the speed of convergence of tail dependence

for optimal taxation.

6.2 Optimal taxes in the calibrated economy

We focus on the benchmark economy. We assume that Pareto weights are given by α (w) =

const × e−mw1/(1−γ)
, where const is chosen so that they integrate to one. Recall from our

discussion in Section 3.3 that optimal marginal taxes are fully characterized by F , γ and α.

We set the parameter m to 0.35, which in our calibration implies that the average optimal

marginal tax rate coincides with the average marginal tax rate in the data.

To compute the optimal taxes, we first solve the relaxed problem and then verify that the

solution satisfies global incentive constraints. In all cases, which we report here and in the

appendix, we found that the FOA was valid. We provide additional computational details in

the appendix. We summarize properties of the optimal marginal taxes in two sets of figures.

The first set reports the marginal taxes ∂
∂yi
T ∗ (yi, y−i) as a function of yi, holding y−i fixed

at different levels. The second set reports ∂
∂yi
T ∗ (yi, byi) as a function of yi, holding ratio of

earnings y−i/yi fixed at different values of b. For ease of comparison, Figure 2 reports these

statistics of the U.S. tax schedule implied by the estimated HSV functional form.

We now discuss the optimal taxes. We start with a benchmark economy, which restricts

k = 1. We set the parameter m to 0.35, which in our calibration implies that the average

optimal marginal tax rate coincides with the average marginal tax rate in the data. This way,

the total amount of redistribution is similar in our model and the data. Figure 3 reports the
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(a) i’s marginal tax given y−i (b) i’s marginal tax given y−i

yi

Figure 2: U.S. taxes implied by the estimated HSV schedule

(a) i’s marginal tax given y−i (b) i’s marginal tax given y−i

yi

Figure 3: Optimal taxes, m = 0.35

optimal taxes in the same format as Figure 2. It also plots, in gray lines, optimal tax rates for

two alternative assumptions about dependence of productivities: perfect dependence (dashed-

dotted) and independence (solid). As discussed in Section 3.3, the optimal taxes under perfect

dependence also coincide with taxes on single individuals. The optimal taxes with independent

types are separable and thus do not depend on the other spouse’s earnings.

Optimal taxes in the calibrated economy lie between the two gray lines, consistent with

the comparative statics results we established in Proposition 4. One can also see from Figure

2 that the optimal marginal taxes are positively jointed for low earners since the marginal

tax ∂
∂yi
T ∗ (yi, y−i) is increasing in y−i for low values of yi. This result follows from Lemma 8.

The same proposition also established that the optimal taxes must be negatively-jointed for

high-earners.25 This occurs at much higher earnings levels (>$8.5 mln) than the scale of the

x-axis we use. That being said, optimal jointness is very modest for all earnings levels, with

marginal taxes for one spouse changing by, at most, several percentage points as a function

earnings of the other spouse. This feature is driven by the properties of the Gaussian copula.

In the appendix, we plot the optimal taxes for the FGM copula and show that optimal jointness

25Spiritus et al. (2022) solved numerically a related optimal joint taxation problem and also found that optimal
jointness may be positive or negative.
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(a) i’s marginal tax given y−i, m = 1.5
and k = 1

(b) i’s marginal tax given y−i, m = 0.35
and k = 2

(c) i’s marginal tax given y−i, m = 0.35
and k = 0

(d) i’s marginal tax given y−i

yi
, m = 1.5

and k = 1

(e) i’s marginal tax given y−i

yi
, m = 0.35

and k = 2

(f) i’s marginal tax given y−i

yi
, m = 0.35

and k = 0

Figure 4: Optimal taxes, robustness to m and k

is much more pronounced in that case. This is consistent with our discussion in Section 4.1,

where we showed that a slower pace of convergence to tail independence implies a smaller force

for positive jointness at the bottom (negative jointness at the top), that eventually switched

to negative (positive) jointness for tail-dependence distributions. The Gaussian copula, with

its lower speed of convergence, implies smaller jointness than the FGM copula.

The optimal tax schedule shares properties implied by our analytical formulas, both qual-

itatively and quantitatively. In particular, in the appendix, we plot the optimal distortions

λ∗ (·, w−i) where wages of the spouse w−i are held at the 50th percentile of the productivity

distribution. These distortions align very closely with the analytical expression for the average

distortions E
[
λ∗i

∣∣∣wi = t
]

that we derived in equation (25).

In Figure 4, we explore sensitivity of these results to parameters governing Pareto weights.

In the top row we plot the optimal taxes with a much more redistributive planner (m = 1.5).

The optimal taxes are higher, reflecting a stronger desire for redistribution. Negative jointness

now occurs at much lower earnings levels than in Figure 3 and can be easily seen on the graphs.

Nonetheless, the level of optimal jointness remains low.

The second and third columns in Figure 4 we consider optimal taxes under non-separable

Pareto weights αm (w) = const ×
[
1
2α (w1)

k + 1
2α (w2)

k
]1/k

. Our benchmark weights corre-

spond to the special case of k = 1. Weights αm are submodular when k ≥ 1 and supermodular

when k ≤ 1. The case k = 0 corresponds to weights αm being measurable only w.r.t. to r,

i.e., the case when the planner has an inherent preference for family earnings-based taxation.

We report in the last two columns of Figure 4 optimal taxes for (m, k) = (0.35, 2) and for
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(m, k) = (0.35, 0). The level of the optimal marginal tax rates in these two cases is broadly

similar to our starting point, (m, k) = (0.35, 1). Consistent with Corollary 1, submodularity

amplifies the benefits of positive jointness at the bottom, so the positive jointness is now much

more visible and substantial, especially in panel (b). On the other hand, supermodularity

decreases these benefits and amplifies gains from the negative jointness at the top. As a result,

both negative jointness at the bottom and positive jointness at the top are now clearly visible.

Nonetheless, the optimal magnitude of this jointness is very low, and the optimal taxation is

close to the individual earnings-based tax schedule. This remains the case even when k = 0,

i.e., social weights explicitly favor family earnings-based taxation.

Figure 4 also plots the optimal tax rate under perfect dependence and independence. The

optimal tax schedule is no longer separable with independent types when k ̸= 1. Therefore,

in the last two columns of Figure 4, we use several gray lines to plot optimal tax rates under

independent types. One can easily see from these graphs that under independence optimal

taxes are positively (negatively) jointed if α is submodular (supermodular), consistent with

the results in Kleven et al. (2007) and our discussion in Section 4.1.

6.2.1 Is family-earning based taxation optimal?

In this section we consider how well family-earnings based taxes approximate the uncon-

strained optimal. To answer this question, we represent the optimal taxes as Tm,∗(y) =

T fam,∗ (Y (y) , ϱ (y)), where Y (y) = y1+y2 are the total family earnings and ϱ (y) = min{y1,y2}
Y (y)

is the share of a secondary earner in total earnings. Family-earnings based taxes are optimal

if T fam,∗ does not depend on the second argument.

In Figure 5 we plot ∂
∂Y T

fam,∗ (·, ϱ) for different values of ϱ. Panel (a) uses this representa-

tion to show the U.S. tax code implied by the estimated HSV function. Since U.S. tax schedule

is family earnings-based, ∂
∂Y T

fam,US (·, ϱ) is the same for all ϱ. In panels (b)-(f) we plot the

optimal tax on family earnings for the same specifications that we used in Figures 3 and 4.

The marginal tax rates vary substantially with the share of earnings of the secondary earner,

with a higher share corresponding to a lower marginal family tax. In all cases, pure family

earnings-based taxation is a poor approximation of the optimal tax code.

7 Conclusion

Multidimensional screening problems are ubiquitous in public finance applications. In this

paper, we consider one of the simplest versions of such problems - the optimal taxation of joint

earnings of couples. We show that despite superficial similarity to multidimensional screening
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(a) U.S. taxes implied by the estimated HSV model (b) Optimum, m = 0.35 and k = 1

(c) Optimum, m = 1.5 and k = 1 (d) Optimum, m = 0.35 and k = 2 (e) Optimum, m = 0.35 and k = 0

Figure 5: Marginal taxes on family earnings

problems in industrial organization, our problem is much easier to analyze and can often be

studied using the first-order approach. We identify the lack of participation constraints in our

application as the key reason for this simplification.

We also characterize the optimal taxes in these settings. Such taxes are a solution to a

second-order partial differential equation, which is very complex and does not generally have

an analytical solution. We show that this problem can be overcome by focusing on various

conditional average moments of taxes. These conditional moments are very illuminating about

the economic mechanisms that drive the shape of the optimal tax schedule, both qualitatively

and quantitatively.

In the calibrated economy, we find that the optimal taxes are negatively jointed at the

bottom and positively at the top. However, this jointness is small, and the optimal taxes can

be well approximated by separable, individual earnings-based taxation. In contrast, family

earnings-based taxes provide a poor approximation to the optimal tax code, even when Pareto

weights explicitly favor this type of taxation.
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Appendix

8 Mathematical preliminaries

This section lists some basic mathematical concepts necessary to characterize a solution to

the mechanism design problem. We refer the reader to Evans (2010) and Rindler (2018) for

additional background reading.

Let U ⊆ Rn be open, where n ≥ 1. A function v : U → R is compactly supported in

U if it is zero outside some compact C ⊂ U . A measurable v : U → R is locally integrable

on U if
∫
C |v (w)| dw < ∞ for every compact C ⊂ U , and it is called integrable on U if∫

U |v (w)| dw < ∞. A measurable v : U → R is said to be essentially bounded on U if there

exists m such that |v (w)| ≤ m a.e. on U . We will write L 1 and L ∞ for the spaces of

integrable and essentialle bounded functions, respectively.

A locally integrable function v : U → R is weakly differentiable on U if there exists a locally

integrable vector field ∂v
∂w : U → Rn such that for all infinitely differentiable ϕ with a compact

support in U , ∫
U

∂ϕ (w)

∂wi
v (w) dw = −

∫
U
ϕ (w)

∂v (w)

∂wi
dw.

The vector field of partial derivatives of v is called a weak gradient, it is unique up to a set of

zero measure. If v is differentiable, it is weakly differentiable, and its weak gradient coincides

with the classical one.

It is well known that for weakly differentiable ϕ ∈ L∞ with ∂ϕ
∂w ∈ L∞ and weakly differen-

tiable v ∈ L1 with ∂v
∂w ∈ L1, the product ϕv is weakly differentiable with ∂(ϕv)

∂w = ∂ϕ
∂wv + ∂v

∂wϕ;

moreover, ϕv and its weak gradient is integrable. Then, the following identity, known as the

Divergence Theorem (Theorem 1.5.3.1 in Grisvard (2011)), is satisfied for any bounded U with

a Lipshitz boundary:∫
U

∂ [ϕ(w)v (w)]

∂w
dw =

∫
∂U
ϕ (w) v (w)ni (w)σ (dw) ,

where ni (w) is the i-th component of the outward unit vector to ∂U at w and σ is the Lebesgue

measure on ∂U .

The Coarea Formula is Theorem 11 in Haj lasz (1999). Let Q : Rn
++ → Rm be weakly

differentiable, where m ≤ n. Then, for every (Borel) measurable v : Rn
+ → R that is either

non-negative or is such that v · JQ is integrable, where JQ (w) is the Jacobian of Q at w,∫
v(w) · JQ(w)dw =

∫ (∫
Q−1(t)

v(w)Hn−m(dw)

)
dq,
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where Hn−m is the so called (n−m)-dimensional Hausdorff measure. As explained in Chapter

2 of Evans and Garzepy (2018), the Hausdorff measure coincides with the standard Lebesgue

measure for "nice" sets, e.g., n = 2, m = 1 and Q−1 (t) is a plane curve. On the other hand,

if n = m and Q is injective, then the Hausdorf measure is a counting measure; thus, the inner

integral on the right-hand side is v
(
Q−1 (t)

)
, and we recover the standard change of variables

formula.

9 Proofs for Section 3.1

We start with an auxiliary lemma that establishes properties of µ and tuples (vs, cs, ys),

(vm, cm,ym) that satisfy the constraints of the mechanism design problem.

Lemma 12. Consider µ and (vs, cs, ys), (vm, cm,ym) such that (3), (4), (5) and (6) hold.

Then, both vs and vm are nondecreasing, bounded from below, locally Lipshitz, a.e. and weakly

differentiable with weak derivatives given by (7). Moreover, µ ∈ (0, 1) and (a) vsg, vmf ∈ L 1

and (b) w ∂vs

∂w g, w1
∂vm

∂w1
f, w2

∂vm

∂w2
f ∈ L 1.

Proof. Use (3) to substitute for cs in (4) to obtain

vs (w) ⩾ vs (ŵ) + γ

(
ys (ŵ)

ŵ

)1/γ
((

ŵ

w

)1/γ

− 1

)
. (44)

Monotonicity of vs follows directly from (44) and nonnegativity of earnings. As a result, vs is

bounded from below by vs(0).

A further examination of (44) reveals that vs is defined as a maximum of functions that

are affine in w−1/γ, thus vs must be a convex function of w−1/γ. Since the transformation

w 7→ w−1/γ is continuously differentiable on R++, Theorem 10.4 in Rockafellar (2015) implies

that vs is locally Lipshitz. By Theorem 6 on p. 296 (Rademacher Theorem) in Evans (2010), vs

is differentiable a.e. due to local Lipshitz continuity. Then, Theorem 5 and Remark on p. 295

in Evans (2010) imply that vs is weakly differentiable. Finally, since vs is differentiable a.e., the

standard envelope argument applied to (44) together with the fact that the maximum on the

right-hand side is attained at ŵ = w establishes that (7) holds at every point of differentiability.

Remark that the exactly same argument applies to vm, hence it is also nondecreasing,

bounded from below, locally Lipshitz, a.e. and weakly differentiable with weak derivatives

given by (7).

We now show properties µ ∈ (0, 1) and (a), (b). To begin, use (3) to rewrite (5) in terms
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of vs and vm as follows:

µ

2

∫ ( 2∑
i=1

(
ymi (w) − γ

(
ymi (w)

wi

)1/γ
)

− vm(w)

)
F (dw)+

+ (1 − µ)

∫ (
ys(w) − γ

(
ys(w)

w

)1/γ

− vs(w)

)
G(dw) ≥ 0. (45)

Note that the value of maxy≥0

(
y − γ

( y
w

)1/γ)
is proportional to w1/(1−γ). Since vs, vm are

bounded from below and
∫
w1/(1−γ)G(dw) <∞, the left-hand side of (45) is finite.

It is immediate that, if µ ∈ (0, 1), then property (a) holds. If µ = 0, then, since Φ(µ) = −∞
and

∫
vm(w)F (dw) ≥ vm(0), we must have

∫
vs(w)G(dw) = ∞ due to (6). This contradicts

(45). The similar argument rules out µ = 1, and hence property (a) is established.

We now show that (c) holds. Consider the following auxiliary problem parameterized by

b ≥ 0:

max
y≥0

∫
y(w)G(dw) − b s.t.

∫ (
y(w)

w

)1/γ

G(dw) = b.

It is easy to see that the value of this problem diverges to −∞ as b → ∞. Substitute ∂vs

∂w for

ys using (7) to obtain that
∫
w ∂vs(w)

∂w G(dw) must be finite. The same argument applies to vm,

thus
∫
wi

∂vmi (w)
∂wi

F (dw) <∞ for i = 1, 2.

9.1 Relaxed problem

We now formally define and further simplify the relaxed problem introduced in the main text.

Let V s and V m be the spaces of functions vs and vm satisfying the conditions listed in Lemma

12. Then, the relaxed problem is to select µ ∈ [0, 1] and (vs, vm) ∈ V s × V m to maximize W
defined in (2) subject to (6) and (8).

To make our analysis applicable to study extensions in Section 5, we allow αm(w1, w2) ̸=
α(w1)+α(w2)

2 but still require this function to be symmetric and
∫
α(w)G(dw) = 1. The asym-

metric case relevant for Sections 5.8 and 5.9 will be discussed separately.

Remark that W can be rewritten as follows:

W =
µ

2

∫
(αm(w) − E [αm]) vm(w)F (dw) + (1 − µ)

∫
(α(w) − 1) vs(w)G(dw)+

+

∫ 1

µ
Φ(ε)dε+ (µE [αm] + (1 − µ))

[
µ

2

∫
vm(w)F (w) + (1 − µ)

∫
vs(w)G(dw)

]
+

+ (E [αm] − 1)µ(1 − µ)

[
1

2

∫
vm(w)F (w) −

∫
vs(w)G(dw)

]
. (46)
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Two terms in square brackets can be solved for from (6) and (8). It is immediate that the

budget constraints must bind, thus the term in the second line equals to S, which is given by

S =
µ

2

∫ 2∑
i=1

(
w1+γ
i

(
∂vm (w)

∂wi

)γ

− γwi
∂vm (w)

∂wi

)
F (dw)+

+ (1 − µ)

∫ (
w1+γ

(
∂vs(w)

∂w

)γ

− γw
∂vs(w)

∂w

)
G(dw). (47)

The term in the square brackets in the third line equals to Φ(µ) due to (6).

Putting all pieces together, the relaxed problem is

max
µ∈[0,1]

(vs,vm)×V s×V m

µ

2

∫
(αm(w) − E [αm]) vm(w)F (dw) + (1 − µ)

∫
(α(w) − 1) vs(w)G(dw)+

+

∫ 1

µ
Φ(ε)dε+ (µE [αm] + (1 − µ))S + (E [αm] − 1)µ(1 − µ)Φ(µ). (48)

It is worth to mention that the solution to (48) is defined up to constants vs(0) and vm(0).

These constants are pinned by two binding constraints (6), (8) so that
∫
vs,∗(w)G(dw) =

S∗ − µ∗Φ(µ∗) and 1
2

∫
vm,∗(w)F (w) = S∗ + (1 − µ∗)Φ(µ∗). Here, S∗ is (47) evaluated at the

optimum.

9.2 Optimality conditions

In this section, we formally derive conditions that are necessary and sufficient for optimality

in the relaxed problem (48). Recall that θ is the tail statistics of G defined by θ(t) = tg(t)
1−G(t) .

In the proposition below, we use the shorthand notation θi to denote this statistics evaluated

at t = wi.

Proposition 2. Consider µ ∈ (0, 1) and (vs, vm) that satisfy (A1) λs, λm1 , λ
m
2 are continuous,

(A2) λ ≤ λs, λm1 , λ
m
2 ≤ λ for some −1 < λ ≤ λ <∞, (A3) λs, λm1 , λ

m
2 are weakly differentiable,

(A4) ∂(wλsg)/∂w
g ,

∑2
i=1 ∂(wiλ

m
i f)/∂wi

f ∈ L ∞ and (A5) λsθ, λm1 θ1, λ
m
2 θ2 ∈ L ∞.

Set η := (µE [αm] + (1 − µ))−1. Then, (vs, vm) is in V s×V m and maximizes the objective

in (48) for fixed µ if and only if

∂ (γwλs(w)g(w))

∂w
= η (α(w) − 1) g(w), (49)

2∑
i=1

∂ (γwiλ
m
i (w)f(w))

∂wi
= η (αm(w) − E [αm]) f(w). (50)
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If (vs,∗, vm,∗) verifies (A1)-(A5), then (49), (50) hold and the following first-order condi-

tions w.r.t. µ is satisfied:

1 − γ

2

∫ 2∑
i=1

wi

(
wi

1 + λm,∗
i (w)

)γ/(1−γ)

F (dw) − (1 − γ)

∫
w

(
w

1 + λs,∗(w)

)γ/(1−γ)

G(dw) =

= Φ(µ∗) + η∗ (1 − E [αm])

(
S∗ +

∂ [µ∗(1 − µ∗)Φ(µ∗)]
∂µ

)
. (51)

Proposition 2 contains two parts. The first parts looks at the optimal choice of functions

(vs, vm) in the relaxed problem with a fixed value of µ. This a concave problem; as a result,

the differential equations in (49), (50) are necessary and sufficient for optimality of (vs, vm)

satisfying the set of regularity conditions (A1)-(A5).

Recall that distortions are defined by (14) and satisfy (15). Condition (A2) means that

marginal taxes are uniformly bounded with the upper bound strictly less than 1, and (A1)

means that vs, vm are continuously differentiable. By (7), this is equivalent to the fact that

earnings change continuously ruling out kinks in taxes. Condition (A3) ensures that (weak)

derivatives in (49), (50) are well-defined. Then, (A4) and (A5) require that distortions and

their derivatives are well-behaved on the boundary and at “infinity”. In particular, (A5) means

that λs (w)wg (w) converges to 0 fast enough so that limw→∞ λs (w)wg (w) v̂s(w) = 0 for all

v̂s ∈ V s. Finally, condition (A4) means that the sum of ∂(wg)/∂w
g λs(w) and w ∂λs(w)

∂w is bounded.

Since ∂(wg)/∂w
g ∼ −θ(w) as w → ∞, boundedness of the first-term is implied by (A2) and (A4).

Hence, condition (A4) reduces to the requirement that the derivative of λs doesn’t explode as

w → 0 and converges to 0 fast enough as w → ∞, which holds when this derivative is bounded

and λs converges as w → ∞. The interpretation of these condition for vm is identical.

The second part of proposition 2 gives the first-order necessary condition for µ∗. In general,

there may be multiple solutions to (51) when E[αm] ̸= 1, because the relaxed problem is not

jointly concave in µ and (vs, vm). However, in the benchmark economy or more generally when

E[αm] = 1, (51) pins down a unique value of µ∗, because (49), (50) do not depend on µ due to

η = 1 for all µ.

Proof. We first show that (vs, vm) is in V s × V m provided that (A2) holds. Indeed, by (14),

w ∂vs(w)
∂w ≤

(
w

1+λ

)1/(γ−1)

, which gives

vs(w) − vs(0) =

∫ 1

0
w
∂vs(wt)

∂w
dt ≤ (1 − γ)

(
w

1 + λ

)1/(γ−1)

.

Since the value of
∫
w1/(1−γ)G(dw) is finite, both vsg and w ∂vs

∂w g are integrable, thus vs ∈ V s.
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The argument for vm is identical as wi
∂vmi (w)

∂wi
≤
(

wi

1+λ

)1/(γ−1)

for i = 1, 2 implies

vm(w) − vm(0) =

∫ 1

0

2∑
i=1

wi
∂vm(wt)

∂wi
dt ≤ (1 − γ)

2∑
i=1

(
wi

1 + λ

)1/(γ−1)

.

We now study optimality of (vs, vm) for fixed µ ∈ (0, 1). Remark that vs enters social

welfare W only through the functional Υs defined by

Υs(vs) :=

∫ (
η (α(w) − 1) vs(w) + w1+γ

(
∂vs(w)

∂w

)γ

− γw
∂vs(w)

∂w

)
G(dw).

Since Υs is concave, vs ∈ V s satisfies Υs(vs) ≥ Υs(v̂s) for all functions v̂s in V s if and only if

the following “first-order condition” holds:

lim
t→0

Υs((1 − t)vs + tv̂s) − Υs(v̂s)

t
≤ 0 ∀v̂s ∈ V s. (52)

It is routine to verify using the Monotone Convergence Theorem that the limit in (52) can be

taken under the integral sign and that this condition is equivalent to∫ (
η (α(w) − 1) (v̂s(w) − vs(w)) + γwλs(w)

(
∂v̂s(w)

∂w
− ∂vs(w)

∂w

))
G(dw) ≤ 0 ∀v̂s ∈ V s.

(53)

Remark that V s is a cone, thus kvs ∈ V s for every k > 0. It follows that∫ (
η (α(w) − 1) vs(w) + γwλs(w)

∂vs(w)

∂w

)
G(dw) = 0, (54)

which allows to eliminate vs from (53).

Let v̂s be a function in V s. Apply the Divergence Theorem (integration by parts) to obtain∫ t

t
γwλs(w)

∂v̂s(w)

∂w
G(dw) = −

∫ t

t

∂ (γwλs(w)g(w)) /∂w

g(w)
v̂s(w)G(dw)+

+ γλs(t)θ(t)(1 −G(t))v̂s(t) − γλs(t)tg(t)v̂s(t).

(A2) ensures that the second term becomes 0 as t→ 0. Since the expected value of v̂s is finite,

(1 − G(t))v̂s(t) converges to 0 as t → ∞. It follows that the second term on right-hand side

goes to 0 as t → ∞ due to (A5). By (A2) and (A4), the Dominated Convergence Theorem

implies that (53) when combined with (55) can be rewritten as∫ [
η (α(w) − 1) − ∂ (γwλs(w)g(w)) /∂w

g(w)

]
v̂s(w)G(dw) ≤ 0. (55)
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By (A2), w ∂vs(w)
∂w ] ≥

(
w

1+λ

)1/(γ−1)

. Hence, nonnegativity constraints on earnings are slack,

i.e., in a neighborhood of every w ∈ R++, (55) can be freely varied by setting v̂s = vs ±
ϕ for some smooth function ϕ that vanish outside this neighborhood. As a result, by the

Fundamental lemma of Calculus of variations, (55) holds if and only if the integrand in the

square brackets equals 0 for a.e. w.

The argument for married individuals is similar, and we will sketch it skipping intermediate

steps. Recollect that vm enters the relaxed problem only through the functional Υm defined

by

Υm(vm) :=

∫ (
η (αm(w) − E [αm]) vm(w) +

2∑
i=1

w1+γ
i

(
∂vm(w)

∂wi

)γ

− γwi
∂vm(w)

∂wi

)
F (dw).

Then, vm solves the relaxed problem with fixed µ ∈ (0, 1) if and only if∫ (
η (αm(w) − E [αm]) v̂m(w) +

2∑
i=1

γwiλ
m
i (w)

∂v̂m(w)

∂wi

)
F (dw) ≤ 0 ∀v̂m ∈ V m, (56)

∫ (
η (αm(w) − E [αm]) vm(w) +

2∑
i=1

γwiλ
m
i (w)

∂vm(w)

∂wi

)
F (dw) = 0. (57)

Let v̂m be a function in V m.

By the Divergence Theorem,

∫
[t,t]2

2∑
i=1

γwiλ
m
i (w)

∂v̂m(w)

∂wi
F (dw) = −

∫
[t,t]2

∑
∂ (γwiλ

m
i (w)f(w)) /∂wi

f(w)
v̂m(w)F (dw)+

+
2∑

i=1

∫ t

t
γtλmi (t, w−i)v̂

m(t, w−i)f(t, w−i)dw−i−
2∑

i=1

∫ t

t
γtλmi (t, w−i)v̂

m(t, w−i)f(t, w−i)dw−i.

Clearly, the second term in the second line converges to 0 as t → 0. We claim that the first

term in the second line converges to 0 as t→ ∞. Indeed, by Hölder’s inequality,

2∑
i=1

∫ t

0
γt |λmi (t, w−i)| |v̂m(t, w−i)| f(t, w−i)dw−i ≤ γθ(t) max

i=1,2
max
w−i≤t

|λmi (t, w−i)| ×

× (1 −G(t))

2∑
i=1

∫ t

0
|v̂m(t, w−i)| f(t, w−i)dw−i.

The first term on the right-hand side is bounded due to (A5), the second one goes to 0 as t→ ∞.

To see it, note that 1 −G(t) ≤ Pr(w ≥ (t, t)) and Pr(w ≥ (t, t))E [v̂m|max {w1, w2} = t] → 0

as t→ ∞.
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The rest of the argument is exactly the same as for singles. To sum up, two differential

equations (49), (50) are necessary and sufficient optimality conditions for fixed µ ∈ (0, 1).

It remains to show the necessary first-order condition for µ∗. Equation (51) directly follows

from differentiating W w.r.t. µ and noting that

Υs(vs,∗) = (1 − γ)

∫
w

(
w

1 + λs,∗(w)

)γ/(1−γ)

G(dw), (58)

Υm(vm,∗) =
1 − γ

2

∫ 2∑
i=1

wi

(
wi

1 + λm,∗
i (w)

)γ/(1−γ)

F (dw). (59)

We end this section by pointing out a certain well-known equivalence between vm,∗ and

λm,∗. One can think equivalently of equations (50) and (20) either as a second-order partial

differential equation describing the solution to the relaxed problem vm,∗, or as a system of

joint first order partial differential equations describing the optimal λm,∗ implied by that vm,∗.

Formally: if
(

(1 + λmi (w)) 1/(γ−1)w
γ/(γ−1)

i

)
i=1,2

is continuously differentiable with derivatives

that are uniformly continuous on bounded subsets and (20) holds, then there exists a unique

(up to a constant) function vm such that equation (14) holds for these vm and λm.

9.3 Proof of Proposition 1

Proof. It is easy to see that λs := λ# and λm :=
(
1
2λ

#(w1),
1
2λ

#(w2)
)

satisfy conditions (A1)-

(A5) of Proposition 2 provided that θ−1(t) and θ−1(t) converges to a finite limit as t→ ∞ and

t→ 0, respectively, which is implied by finitness of limt→0,∞ λ#(t). Moreover, these distortions

also verify the necessary and sufficient optimality conditions listed in this proposition, i.e., (49)

and (50). It follows that they characterize the solution to the relaxed problem.

By Proposition 2 in Rochet (1987), the first-order approach is valid if and only if vs,∗ and

vm,∗ are convex functions of x = w−1/γ. It is easy to see that ∂vs,∗(x−γ)
∂x is proportional to

x ·
(
1 + λ# (x−γ)

)
and

∂vm,∗(x−γ
1 ,x−γ

2 )
∂xi

is proportional to xi ·
(

1 + 1
2λ

#
(
x−γ
i

))
. Then, the fact

that the first-order approach is more likely to hold in the bi-dimensional model than in the

uni-dimensional setting can be seen from

x·
(

1 +
1

2
λ#
(
x−γ

))
−x̂·

(
1 +

1

2
λ#
(
x̂−γ

))
≥ x

2
·
(

1 + λ#
(
x−γ

))
− x̂

2
·
(

1 + λ#
(
x̂−γ

))
∀x ≥ x̂.
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10 Proofs for Section 4

Throughout this section, it is assumed that the first-order approach is valid, λs,∗ and λm,∗

satisfy conditions (A1)-(A5) of Proposition 2.

10.1 Coarea formula

We first formally state and prove equation (24) that computes averages of optimal marginal

taxes conditional on level curves of some function Q. We will provide this result for the

general symmetric case with αm potentially different from α(w1)+α(w2)
2 so that the Coarea

formula will be directly applicable in Section 5. In the special case of our benchmark economy,

αm(w1, w2) = α(w1)+α(w2)
2 , thus the value of η∗ in Proposition 2 equals one.

Proposition 3. Let Q : R2
++ → R++ be a continuous function with piecewise continuously

differentiable level curves such that

E

[
2∑

i=1

wi

∣∣∣∣∂Q (w)

∂wi

∣∣∣∣ ∣∣∣Q ≤ t

]
<∞. (60)

Then,

E

[
2∑

i=1

γλm,∗
i

∂ lnQ

∂ lnwi

∣∣∣Q = t

]
= η∗

E [αm] − E [αm|Q ≥ t]

−∂ lnPr (Q ≥ t) /∂ ln t
= η∗

E [αm|Q ≤ t] − E [αm]

∂ lnPr (Q ≤ t) /∂ ln t
. (61)

Proof. Since Q has piecewise continuously differentiable level curves, it is weakly differentiable

and the boundary of {w|Q (w) ≤ t} is Lipshitz. Then, our assumptions on λm,∗ ensure that

(50) can be transformed by the Divergence Theorem. Thus, we obtain∫
Q−1(t)

2∑
i=1

γwiλ
m,∗
i (w) f (w)ni (w)σ (dw) =

∫
{w|Q(w)≤t}

2∑
i=1

∂
(
γwiλ

m,∗
i (w) f (w)

)
∂wi

dw,

= Pr (Q ≤ t) η∗ (E [αm|Q ≤ t] − E [αm]) , (62)

where n (w) is the outward unit normal to {ŵ|Q (ŵ) ≤ t} at w.

By (60),
∑2

i=1 γwiλ
∗,m
i

∂Q
∂wi

f is integrable on {w|Q (w) < t}. The Coarea Formula discussed

in the mathematical appendix implies that

E

[
2∑

i=1

γwiλ
∗,m
i (w)

∂Q (w)

∂wi
|Q ≤ t

]
=

∫ t
0

(∫
(Q)−1(s)

∑2
i=1 γwiλ

m,∗
i (w) ∂Q(w)

∂wi
f (w) σ(dw)

∥∂Q(w)/∂w∥

)
ds.

Pr (Q ≤ t)

Then, by the definition of conditional expectation, for a.e. q,

E

[
2∑

i=1

γwiλ
m,∗
i (w)

∂Q (w)

∂wi
|Q = t

]
=

∫
(Q)−1(t)

∑2
i=1 γwiλ

m,∗
i (w) ∂Q(w)

∂wi
f (w) σ(dw)

∥∂Q(w)/∂w∥

dPr (Q ≤ t)
/
dt

.

(63)
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It is easy to see that the unit normal vector on the boundary of {w|Q (w) ≤ t} is given by

ni (w) = ∂Q(w)/∂wi

∥∂Q(w)/∂w∥ . Divide each side of (63) by Q to establish the second part of equation

(61).

To see the first part of equation (61), use Bayes rule to obtain

Pr (Q ≥ t) (E [αm] − E [α|Q ≥ t]) = Pr (Q ≤ t) (E [α|Q ≤ t] − E [αm]) .

And, the result follows from the second part of equation (61).

10.2 Proof of Lemma 2

Proof. Since x 7→ (1 + x)γ/(γ−1) is decreasing and convex, for all t,

E
[(

1 + λm,∗
i (w)

)γ/(γ−1) |wi = t
]
≥
(
1 + E

[
λm,∗
i (w)|wi = t

])γ/(γ−1) ≥ (1 + λs,∗(t))
γ/(γ−1) ,

where the second inequality is due to Lemma 4. Then, (51) implies that Φ(µ∗) ≥ 0; as a result,

µ∗ ≥ µLF and
1

2

∫
vm,∗(w)F (dw) −

∫
vs,∗(w)G(dw) = Φ(µ∗) ≥ 0.

10.3 Average distortions

10.3.1 Proof of Lemma 3

Proof. The argument is the same as in the proof of Proposition 1.

10.3.2 Proof of Lemma 4

Proof. By F a ≤PQD F b,

Pra (w−i ≥ t−i|wi ≥ ti) ≤ Prb (w−i ≥ t−i|wi ≥ ti) ∀t. (64)

Since α is decreasing, the first-order stochastic dominance gives Ea [αm|wi ≥ t] ≥ Eb [αm|wi ≥ t],

thus Ea
[
λm,a,∗
i |wi = t

]
≤ Eb

[
λm,b,∗
i |wi = t

]
.

If F is independent with marginals G, then E [αm|wi ≥ t] = 1
2E [αm(wi)|wi ≥ t] + 1

2 . By

monotonicity of α, since E [α] = 1, the value of E [α(wi)|wi ≥ t] is less than than 1. It follows

that Ea
[
λm,a,∗
i |wi = t

]
≥ 0 whenever F a is positively dependent.

If F b is perfectly assortative, then Eb [αm|wi ≥ t] coincides with E [α|w ≥ t] which implies

that Eb
[
λm,b,∗
i |wi = t

]
= λs,b,∗(t) = λs,a,∗(t) for all t.
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10.3.3 Proof of Lemma 5

Proof. Recollect that the distribution with density αag first-order stochastically dominates the

distribution with density αbg. It follows that E
[
αa|w ≥ t

]
≥ E

[
αb|w ≥ t

]
, thus λs,a,∗(t) ≤

λs,b,∗(t) for all t.

As discussed in Chapter 6.E of Shaked and Shanthikumar (2007), under log-supermodularity

of f , the distribution with density αa(wj)f first-order stochastically dominates the distribu-

tion with density αb(wj)f for j = 1, 2. As a result, E
[
αa(wj)|wi ≥ t

]
≥ E

[
αb(wj)|wi ≥ t

]
for

j = 1, 2, thus E
[
λa,∗i |wi = t

]
≤ E

[
λb,∗i |wi = t

]
for all t.

10.3.4 Proof of Lemma 6

Proof. Since α is nondecreasing, for every value of ι,

E [αm|w2/w1 ≥ ι] ≥ 1

2
E [α(w1)|w2/w1 ≥ ι] .

The assumption ensures that w1 conditional on w2/w1 ≥ ι converges almost surely to 0 as

ι → ∞. To see it note that E [w1|w2/w1 ≥ ι] ≤ 1
ιE [w2|w2/w1 ≥ ι] →ι→∞ 0. Since α(0) > 2,

E [αm|w2/w1 ≥ ι] > 1 for all large values of ι, thus E
[
λm,∗
2 − λm,∗

1 |w2/w1 ≥ ι
]
< 0 for all

sufficiently large ι due to (27).

10.4 Average jointness

It is assumed throughout that the following coefficients measuring tail-dependence and speed of

convergence to are well-defined: χ := limt→∞ Pr (w−i ≥ t|wi ≥ t), χ := lim→0 Pr (w−i ≥ t|wi ≥ t)

and κ := limt→∞
ln Pr(wi≥t)

lnPr(w≥(t,t)) , κ := limu→0
lnPr(wi≤t)

lnPr(w≤(t,t)) . Moreover, both limiting distributions

F (·|∞) and F (·|0) exist.

10.4.1 Proof of Lemma 7

Proof. We start with a preliminary observation that will be useful to sign average jointness at

the extremes. Unpack E
[
λm,∗
i |wi = t

]
conditioning on spouse j being more and less productive

than spouse i to get

1 =
E
[
λm,∗
i |wi = t ≤ w−i

]
E
[
λm,∗
i |wi = t

] Pr (w−i ≥ t|wi = t) +
E
[
λm,∗
i |wi = t ≤ w−i

]
E
[
λm,∗
i |wi = t

] Pr (w−i ≤ t|wi = t) .

(65)

Observe that Pr (wj ≤ t|wi = t) = 1
2
d(1−Pr(w≤(t,t)))
d(1−Pr(wi≤t)) . By L’Hôpital’s rule and symmetry,

lim
t→∞

Pr (w−i ≤ t|wi = t) = lim
t→∞

1

2

1 − Pr (w ≤ (t, t))

1 − Pr (wi ≤ t)
= 1 − 1

2
lim
t→∞

Pr (w−i ≥ t|wi ≥ t) ,
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which clearly equals to 1 − χ
2 . Then, dividing each side of (65) by E

[
λm,∗
i |wi = t

]
and taking

t to ∞, we obtain

1 = lim
t→∞

E
[
λm,∗
i |wi = t ≤ w−i

]
E
[
λm,∗
i |wi = t

] χ

2
+ lim

t→∞
E
[
λm,∗
i |wi = t ≥ w−i

]
E
[
λm,∗
i |wi = t

] (
1 − χ

2

)
. (66)

We are now in position to prove Lemma 7. Suppose κ < 1, thus χ = 0. As discussed in

the text, B(∞) = κ, and A(∞) =
1− 1

2
α(∞)− 1

2
α(∞)

1− 1
2
α(∞)− 1

2

∫
α(w)F (dw|∞)

.

Case (i). If F (·|∞) strictly first-order stochastically dominates G, then A(∞) < 2 due to∫
α(w)F (dw|∞) <

∫
α(w)G(dw) = 1, thus the product A(∞) ×B(∞) < 1 when κ = 1

2 .

Case (ii). If F (·|∞) is degenerate, then A(∞) = 1, thus the product A(∞) × B(∞) < 1

when κ < 1.

10.4.2 Proof of Lemma 8

Proof. For the left corner, the analogue of (66) is

1 = lim
t→0

E
[
λm,∗
i |wi = t ≤ w−i

]
E
[
λm,∗
i |wi = t

] (
1 −

χ

2

)
+ lim

t→0

E
[
λm,∗
i |wi = t ≥ w−i

]
E
[
λm,∗
i |wi = t

] χ

2
.

And, the result follows from the same argument as in the proof of Lemma 7.

10.4.3 Relationship to Kleven et al. (2007)

In their working version of the paper, Kleven et al. (2007) (KKS for short) outlined how joint-

ness can be signed at each productivity vector under the assumption of independent types.

We now briefly (and heuristically) review their argument in the notations of the present pa-

per focusing for simplicity on a symmetric economy with supermodular Pareto weights. The

argument for submodular weights is identical.

When types are independent, equation (50) can be rewritten as

2∑
i=1

∂
(
λm,∗
i (w) γwig (wi)

)
/∂wi

g (wi)
= αm (w) − 1. (67)

Differentiate twice (67) to obtain

2∑
i=1

∂

∂wi

(
∂2
(
λm,∗
i (w) γwig (wi)

)
/∂w1∂w2

g (wi)

)
=
∂2αm (w)

∂w1∂w2
. (68)

Define the set of types U for which jointness is strictly positive as

U :=

{
w|
∂
(
λm,∗
i (w) γwig (wi)

)
∂w−i

> 0

}
.
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Due to the boundary conditions discussed in the text, the set U is contained in the interior of

R2
+.

KKS suggested to integrate (68) over U , assuming that it is non-empty, and then use the

Divergence Theorem to obtain∫
U

∂2α (w)

∂w1∂w2
dw =

∫
U

2∑
i=1

∂

∂wi

(
∂2
(
λm,∗
i (w) γwig (wi)

)
/∂w1∂w2

g (wi)

)
=

=

∫
∂U

2∑
i=1

(
∂2
(
λm,∗
i (w) γwig (wi)

)
/∂w1∂w2

g (wi)

)
ni (w)σ (dw) , (69)

where, as usual, n (w) is the outward unit normal to ∂U at w. Clearly, the expression on

the left-hand side is non-negative due to supermodularity of α. On the other hand, since on
∂(λm,∗

i (w)γwig(wi))
∂w−i

> 0 on U but
∂(λm,∗

i (w)γwig(wi))
∂w−i

< 0 on the interior of its complement, we

must have ni (w) ∝ −∂2(λm,∗
i (w)γwig(wi))

∂w1∂w2
. It follows that the second line in (69) is non-positive.

Conclude n (w) = 0, which a contradiction.

The KKS’s argument is powerful but assumes quite a bit of smoothness and regularity.

Using our techniques, under much milder smoothness, jointness can be shown to be negative

on average when α is strictly supermodular. The reader can verify that under independence of

w, supermodularity of αm translates into supermodularity of its conditional expectation, that

is
∂2

∂t1∂t2
E [αm|w ≤ t] ≥ 0 ∀t.

Then, since B(t) = 1 and E[αm] = 1,

1
2E [αm|w ≤ (t, t)] − 1

E [αm|wi ≤ t] − 1
≥ 1 ∀t,

thus average jointness is non-positive.

11 Proofs for Section 5

Throughout this section, it is assumed that the first-order approach is valid, λs,∗ and λm,∗

satisfy conditions (A1)-(A5) of Proposition 2.

11.1 Social weights on single and married

11.1.1 Proof of Corollary 1

Proof. Part (a). The argument for comparative statics with respect to Pareto weights is

identical to the proof of Lemma 5. Specifically, as explained in Chapter 6.E of Shaked and
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Shanthikumar (2007), under log-supermodularity of f , the distribution with density αaf first-

order stochastically dominates the distribution with density αbf . Hence,∫
W

1[t,∞)(wi)α
a (w) f (w) dw ≥

∫
W

1[t,∞)(wi)α
b (w) f (w) dw,

which implies E
[
λm,a,∗
i |wi = t

]
≤ E

[
λm,a,∗
i |wi = t

]
for all t.

As shown in the proof of Lemma 6, ι−1w2 conditionally on w2/w1 ≥ ι converges to 0 almost

surely as ι → 0. Since α is continuous, monotone and bounded, it is uniformly continuous,

thus

lim inf
ι→∞

Ea [αm,a|w2/w1 ≥ ι] = lim inf
ι→∞

Ea
[
αm,a(ι−1w2, w2)|w2/w1 ≥ ι

]
> 1.

Part (b). Since αm,a ∼ αm,b, they satisfy αm,a(∞, wj) = Eb [αm,a]αm,b(∞, wj), where

Eb [αm,a] = Ea [αm,a]︸ ︷︷ ︸
=1

+

∫
αm,a (w)

(
F a (dw) − F b (dw)

)
= (70)

= 1 +

∫ (
F b (dw) − F a (dw)︸ ︷︷ ︸

≥0

)
αm,a (dw) .

Note that for supermodular αm,a, the term Eb [αa] is more than one. Since F a ≤PQD F b, (64)

implies that the distribution F a(·|∞) first-order stochastically dominates F b(·|∞). As a result,

Eb
[
αm,b(∞, w−i)|wi = ∞

]
≤ Ea

[
αm,b(∞, w−i)|wi = ∞

]
due to monotonicity of αm,b. Taking

all pieces together, we obtain

lim
t→0

Eb
[
λm,b,∗
i |wi = t

]
Ea
[
λm,b,∗
i |wi = t

] =
1 − Eb

[
αm,b(∞, w−i)|wi = ∞

]
1 − Eb [αm,a]Ea [αm,b(∞, w−i)|wi = ∞]

≥ 1.

We now show that Lemma 7 extends as well. Consider the right tail and note that sepa-

rability of αm,a was used in the proof of Lemma 7 only when κ = 1
2 . So (ii) of this Lemma

directly applies to non-separable αm. As for (i), under supermodularity and symmetry of αm,a,

αm,a (∞) ≥ −Ea [αm,a] + 2Ea [αm,a (∞, w−i)] .

Since Ea [αm,a] = 1 and Ea [αm,a (∞, w−i)] < Ea [αm,a|wi = ∞] due to F a(·|∞) strictly first-

order stochastically dominating G, we can conclude

lim
t→∞

E
[
λm,∗
i |wi = t ≥ w−i

]
E
[
λm,∗
i |wi = t

] =
1

2

1 − αm,a (∞)

−Ea [αm,a|wi = ∞]
< 1.

Part (c). The arguments here are analogous to Part (b).
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11.2 Bargaining and allocation of resources within couples

In this model, the relaxed problem is exactly the same as in benchmark but welfare W is now

given by

W =
µ

2
E [αmvm] + (1 − µ)E [αvs] +

∫ 1

µ
Φ (ε) dε+ µE [(α(wi) − α(w−i)) v

s(wi)] ,

where the last term is the adjustment due to bargaining. It is immediate to verify using the

arguments in the proof of Proposition 2 that λm,∗ are exactly the same as in the benchmark

and

λs,∗(t) =
1 − E[α|w ≥ t]

γθ(t)
+

µ∗

1 − µ∗
E [α(w−i) − α(wi)|wi ≥ t]

γθ(t)
.

Under positive dependence, monotonicity of α and (64) jointly imply that the last term is

nonnegative.

11.3 Optimality of taxation of family earnings

11.3.1 Proof of Lemma 9

Proof. Part(a). Proposition (3) with Q = R implies that

E

[
2∑

i=1

w
1/(1−γ)

i

w
1/(1−γ)

1 + w
1/(1−γ)

2

λm,∗
i

∣∣∣∣∣R = r

]
=

1 − E
[
αm|R ≥ r

]
γθr (r)

, (71)

where θr is the tail statistics of r. By Proposition (2), the optimal tax is family-earnings based

if and only if λ̂(r) :=
1−E
[
αm|R≥r

]
γθr(r)

verifies (50).

Solve for (w1, w2) as a function of (r, ι) to obtain

w1 =
r(

1 + ι1/(1−γ)
)(1−γ)

, w2 =
r(

1 + ι1/(γ−1)
)(1−γ)

.

It is routine to verify that dw = w1w2
rι drdι, thus f and f̃ , which is the density of (r, ι), are

related by f = rι
w1w2

f̃ . Since w1
∂R
∂w1

+ w2
∂R
∂w2

= r and w1
∂I
∂w1

+ w2
∂I
∂w2

= 0,

2∑
i=1

∂
(
wiλ̂(R(w))f(w)

)
∂wi

=
R(w)I(w)

w1w2

∂
(
rλ̂(r)f̃(r, ι)

)
∂r

. (72)

It follows from (72) that λ̂ satisfies (50) if and only if

∂
(
γrλ̂(r)f̃(r, ι)

)
∂r

= (α (w(r, ι)) − 1) f̃(r, ι).
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Divide this equation by the marginal density of ι and integrate to see the claim in Part (a),

that is, family taxes is optimal if and only if λ̃ = λ̂.

Part (b). It immediately follows from the argument in Part (a).

Part (c). By F̃ a ≤PQD F̃ b,

Pra (R ≥ r|I ≥ ι) ≤ Prb (R ≥ r|I ≥ ι) ∀ (r, ι) . (73)

Since αm is measurable only with respect to r and decreasing in this variable, the first-order

stochastic dominance relationship in (73) gives Ea [αm|I ≥ ι] ≥ Eb [αm|I ≥ ι]. Thus, by (27),

Ea
[
λm,a,∗
2 − λm,a,∗

1 |I = ι
]
≤ Eb

[
λm,b,∗
2 − λm,b,∗

1 |I = ι
]
.

11.4 Public goods and economies of scale in marriage

This model is different from the benchmark in two ways. First, the relationship between the

optimal distortions, which are still defined in (15), and derivatives of vs,∗, vm,∗ now becomes

λs,∗ (w) := bs
(
∂vs,∗ (w)

∂w

)γ−1

wγ − 1, λm,∗
i (w) := bm

(
∂vm,∗ (w)

∂wi

)γ−1

wγ
i − 1.

Second, the resource constraint (8) now reads as

S ≥ µ

2

∫
vm(w)F (w)/bm + (1 − µ)

∫
vs(w)G(dw)/bs,

where S is our shorthand notation for the total economic output, i.e.,

S :=
µ

2

∫ 2∑
i=1

(
w1+γ
i

(
∂vm (w)

∂wi

)γ

− γwi
∂vm (w)

∂wi
/bm

)
F (dw)+,

+ (1 − µ)

∫ (
w1+γ

(
∂vs(w)

∂w

)γ

− γw
∂vs(w)

∂w
/bs
)
G(dw).

Then, (6) and the modified resource constraint give∫
vs(w)G(dw) =

S − µΦ(µ)/bm

µ/bm + (1 − µ)/bs
,

1

2

∫
vm(w)G(dw) =

S + (1 − µ)Φ(µ)/bs

µ/bm + (1 − µ)/bs
.

Following the same steps as in Section 9.1, welfare with additively separable weights, i.e.,

αm(w1, w2) = α(w1)+α(w2)
2 , can be expressed as

W =
µ

2

∫
(αm(w) − 1) vm(w)F (dw) + (1 − µ)

∫
(α(w) − 1) vs(w)G(dw)+

+

∫ 1

µ
Φ(ε)dε+

1

µ/bm + (1 − µ)/bs
S.
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The argument in the proof of Proposition 2 gives that the following modified differential equa-

tions hold at the optimum:

∂ (γwλs,∗(w)g(w))

∂w
=

µ∗/bm + (1 − µ∗)/bs

1/bs
(α(w) − 1) g(w),

2∑
i=1

∂
(
γwiλ

m,∗
i (w)f(w)

)
∂wi

=
µ∗/bm + (1 − µ∗)/bs

1/bm
(αm(w) − 1) f(w).

Two expressions (37), (38) follow from integrating the first equation and applying the

Coarea Formula with Q = wi as in Proposition 3 to the second equation.

11.5 Home production and division of labor within families

We first list several useful properties of functions N s and Nm. These properties will be used

later on to show that the mechanism design problem is well-behaved and its optimal distortions

satisfy (40) and (42).

Lemma 13. (a) N s and Nm are increasing and convex, (b) there exists some x > 0 such that
∂Ns(l)

∂l , ∂N
m(l)
∂li

∣∣∣
li=l

≤ lp−1 (lp + x)
(1−pγ)/pγ for all l, (c) l ∂N

s

∂l and
(
l1

∂Nm

∂l1
, l2

∂Nm

∂l2

)
are one-to-one

on R++ and R2
++, (d) Γs and Γm are uniformly bounded, (e) liml→∞ Γs(l),Γm

ii (l)
∣∣∣
li=l

= γ and

liml→∞ Γm
ij (l)

∣∣∣
li=l

= γ, where convergence is uniform in lj.

Proof. Recollect that N s is defined as a minimum of a function that is jointly convex in (l, x),

thus N s is convex as well. The first order condition for w.r.t. x can be expressed as

x
σ+(1−γ)/γ = (1 −m)

(1−pγ)/pγ, (74)

where m := lp

xp+lp . This condition is also sufficient due to convexity. By the Envelope Theorem,

the derivative of N s is given by

∂N s(l)

∂l
= lp−1 (xp + lp)

(1−pγ)/pγ

. (75)

It is immediate from (75) that N s is strictly increasing which proves (a). (74) implies that

x ≤ 1 which proves (b). Part (c) follows from the previous observation and (75).

Totally differentiate (74) to obtain[
1 − γ

γ
− 1 − pγ

γ
m+ σ

]
d lnx = −1 − pγ

γ
md ln l. (76)

The term in the square brackets in (76) is bounded from below by p − 1 + σ > 0, thus the

derivative of x is uniformly bounded. Then, totally differentiate (75) to obtain

d ln

(
∂N s(l)

∂l

)
=

(
p− 1 +

1 − pγ

γ
m

)
d ln l +

1 − pγ

γ
(1 −m)d lnx.
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By convexity and monotonicity of N s, ∂ln(∂Ns(l)/∂l)
∂l is nonnegative. It follows that Γs defined

by

Γs(l) =

[
1 +

∂ln (∂N s(l)/∂l)

∂l

]−1

is uniformly bounded which proves (d). Finally, since the derivative of x is uniformly bounded

and m goes to 1 as l → ∞, Γs converges to γ as l → ∞.

Most of the arguments for married are analogous, i.e., Nm is convex due to joint convexity

in (l,x). The first order condition for w.r.t. xi can be expressed as

x
σ+(1−γ)/γ
i = 2(1 − ri)

1−q(1−σ)(1 −mi)
(1−pγ)/pγ, (77)

where mi :=
lpi

xp
i+lpi

and ri :=
x
1/q
j

x
1/q
1 +x

1/q
2

for i = 1, 2. Again, (77) is sufficient due to convexity.

By the Envelope Theorem, the derivative of Nm w.r.t. li is given by

∂Nm(l)

∂li
= lp−1

i (xpi + lpi )
(1−pγ)/pγ

, (78)

which proves (a). (74) implies that x ≤ 2−σ−(1−γ)/γ which proves (b). Part (c) follows from the

previous observation and (79).

Totally differentiate (77) to obtain[
1 − γ

γ
− 1 − pγ

γ
mi −

1 − q(1 − σ)

q
ri + σ

]
d lnxi = −1 − q(1 − σ)

q
rid lnxj −

1 − pγ

γ
mid ln li.

(79)

The term in the square brackets in (79) is bounded from below by p − 1 + 1−q
q > 0, thus the

derivative of x is uniformly bounded. Then, totally differentiate (78) to obtain

d ln

(
∂Nm(l)

∂li

)
=

(
p− 1 +

1 − pγ

γ
mi

)
d ln li +

1 − pγ

γ
(1 −mi)d lnxi

Recall that Γm is defined to be

Γm(l) =

 ∂ln(∂Nm
1 (l)/∂l1)
∂l1

+ 1
∂ln(∂Nm

1 (l)/∂l1)
∂l2

∂ln(∂Nm
2 (l)/∂l1)
∂l1

∂ln(∂Nm
2 (l)/∂l2)
∂l2

+ 1

−1

.

By monotonicity and convexity of Nm, the determinatnt of the matrix in the square brackets

is at least 1. Then, uniform boundedness of derivatives of x implies that Γm is uniformly

bounded as well which proves (d). Finally, observe that, by (77), mi goes to 1 as li → ∞
uniformly in lj , which implies that Γm

ii (l) converges to γ and Γm
ij (l) converges to 0 as li → ∞,

where convergence is uniform in the other spouse labor supply. This shows (e) and concludes

proof.
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Equipped with Lemma 13, we can formally establish the results in Section 41. Here, the

notion of welfare is exactly as in the benchmark. To simplify exposition, it is convenient to

define auxiliary functions ψs(l) := ∂Ns

∂ ln l and ψm
i := ∂Nm

∂ ln li
. Then, the fist part of Lemma 12

extends, and the local incentive constraints can be succinctly expressed as

w
∂vs(w)

∂w
= ψs

(
ys(w)

w

)
, wi

∂vm(w)

∂wi
= ψm

i

(
ym1 (w)

w1
,
ym2 (w)

w2

)
, (80)

which is the exact analogue of (7). To ensure properties (a), (b) of this lemma, we need to

make certain assumptions. First, the expected first-best economic surplus from singles is finite,

i.e., ∫
max
y≥0

(
y −N s

( y
w

))
G(dw) <∞;

second, the maximal expected economic surplus from singles diverges to −∞ when the expected

value of
∫
ψs
(
ys(w)
w

)
G(dw) goes to +∞. We impose the same assumptions on married. As a

result, (a), (b) of Lemma 13 are implied by incentive compatibility, therefore we can formulate

our relaxed problem in the same functional spaces, V s and V m.

Finally, by Lemma 13, the local incentive constraints (80) can be inverted to solve for

earnings as a function of derivatives vs and vm. Let ϕs := (ψs)−1 and ϕm := (ψm)−1 . The

relaxed problem is the same as in Section 9.1 but S is given by

µ

2

∫ ( 2∑
i=1

wiϕ
m
i

(
w1
∂vm(w)

∂w1
, w2

∂vm(w)

∂w2

)
−Nm

[
ϕm

(
w1
∂vm(w)

∂w1
, w2

∂vm(w)

∂w2

)])
F (dw)+

+ (1 − µ)

∫ (
wϕs

(
w
∂vs(w)

∂w

)
−N s

[
ϕs
(
w
∂vs(w)

∂w

)])
G(dw). (81)

We now study the relaxed problem along the lines of the proof of Proposition 2. First of

all, let λs and λm be defined as a function of marginal taxes, (15). It is straightforward to

show that they are related to derivatives vs and vm by

λs(w) =
ϕs
(
w ∂vs(w)

∂w

)
∂vs(w)
∂w

− 1, λmi (w) =
ϕmi

(
w1

∂vm(w)
∂w1

, w2
∂vm(w)
∂w2

)
wi

∂vm(w)
∂wi

− 1.

As before, we shall assume that the optimal distortions, λs,∗ and λm,∗, satisfy conditions (A1)-

(A5) of Proposition 2. One important implication of (A2) is that labor supply is strictly

positive and goes to ∞ as productivity goes to ∞. Indeed, since λs,∗ ≤ λ, by Lemma 13, we

have
w

1 + λ
≤ ψs

(
ys,∗(w)

w

)
≤
(
ys,∗(w)

w

)p−1((ys,∗(w)

w

)p

+ x

)(1−pγ)/pγ

,
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which shows that ys,∗(w) is bounded away from zero on every compact subset of R++ and that
ys,∗(w)

w → ∞ as w → ∞.

Clearly, singles and married individuals can be studied separately. We start with singles.

To apply the variational argument from the proof of Proposition 2, we first need to inves-

tigate derivatives of ϕs. Consider the equation l = ϕs(x), where x = wu, that defines l as

a function of u for fixed w. By definition, l ∂N
s(l)
∂l = wu, thus (Γs(l))−1 d ln l = d lnu and

d ln l = wu
l

∂ϕs(wu)
∂x d lnu, which gives

∂ (wϕs (wu) −N s [ϕs (wu)])

∂u
= wΓs(l)

(
li
u
− 1

)
.

Observe that the term in the brackets is exactly λs,∗(w) when evaluated at u = ∂vs,∗(w)
∂w .

Since Γs is uniformly bounded, (A1)-(A5) hold and nonnegativity of earnigns is slack, the

argument in the proof of Proposition 2 is applicable. Specifically, the following differential

equation is necessary for optimality:

∂
(

Γs
(
ys,∗(w)

w

)
wλs,∗(w)g(w)

)
∂w

= (α(w) − 1)g(w). (82)

This equation is analogous to (49), and the only difference is that here Γs is non-constant.

Integrating this equation, we obtain the Diamond’s ABC formula from Section 5.5, that is,

Γm

(
ys,∗(t)
t

)
tλ(t) =

1 − E [α|wi ≥ t]

θ(t)

Since Γs(l) → γ as l → ∞ and ys,∗(w)
w → ∞ as w → ∞, we get

lim
t→∞

λs,∗(t) = lim
t→∞

1 − E[α|w ≥ t]

γθ(t)
.

We now look at married individuals. Again, the first step is to determine derivatives of

ϕm. Consider the equation l = ϕm(x), where x = (w1u1, w2u2), that defines l as a function of

u for fixed w. By definition, li
∂Nm(l)

∂li
= wiui for i = 1, 2, which gives (Γm(l))−1 d ln l = d lnu

and

d ln li =
wiui
li

∂ϕm(w1u1, w2u2)

∂xi
d lnui +

wjuj
li

∂ϕm(w1u1, w2u2)

∂xj
d lnuj .

Combining these expressions we obtain

∂ (w1ϕ
m
1 (w1u1, w2u2) + w2ϕ

m
2 (w1u1, w2u2) −Nm [ϕm (w1u1, w2u2)])

∂ui
=

= wiΓ
m
ii (l)

(
li
ui

− 1

)
+ wj

uj
ui

Γm
ji(l)

(
li
uj

− 1

)
= wj

uj
ui

Γm
ij (l) = wiΓ

m
ij (l), (83)
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where the second equality is due to the definition of Γm and
lj∂N

m(l)/∂lj
li∂Nm(l)/∂li

=
ujwj

uiwi
.

Conditions (A1)-(A5) of Proposition 2, uniform boundedness of Γm and the fact that earn-

ings are strictly positive, permits us to apply the same argument as in the proof of Proposition 2.

Observe that
(

l1
u1

− 1, l2
u2

− 1
)

equals to λm,∗(w) when evaluated at w =
(
∂vm,∗(w)

∂w1
, ∂v

m,∗(w)
∂w2

)
,

thus, by (83), the following differential equation is necessary for optimality:

2∑
i=1

∂
(

Γm
ii

(
ym,∗
1 (w)
w1

,
ym,∗
2 (w)
w2

)
wiλ

m,∗
i (w)f(w) + Γm

ij

(
ym,∗
1 (w)
w1

,
ym,∗
2 (w)
w2

)
wiλ

m,∗
j (w)f(w)

)
∂wi

=

= (αm(w) − 1)f(w). (84)

Integrate (84) using the Coarea Formula with Q = wi and Q = min {w1, w2} to obtain the

following conditional moments of optimal distortions:

E
[
Γm
ii λ

m,∗
i + Γm

ijλ
m,∗
j |wi = t

]
=

1 − E [αm|wi ≥ t]

θ(t)
,

E
[
Γm
ii λ

m,∗
i + Γm

ijλ
m,∗
j |wi = t

]
=

Pr(wj ≥ t|wi ≥ t)

2Pr (wj ≥ t|wi = t)

1 − E [αm|wi ≥ t]

θ(t)
.

By condition (A2), the optimal distortions are uniformly bounded. Since Γm
ii (l) → γ and

Γm
ij (l) → 0 as li → ∞ uniformly in lj and

ym,∗
i (w)
wi

→ ∞ as wi → ∞, we conclude that

lim
t→∞

E
[
λm,∗
i |wi = t

]
= lim

t→∞
1 − E [αm|wi ≥ t]

γθ(t)
,

and average jointness at the top is exactly as in the benchmark.

11.6 Extensive margin

In general, the model with extensive margin is quite complex and cannot be directly studied

using variational arguments. To overcome this challenge, we consider a linear relaxation in

which individual preferences and output take the following form: v = c −
(
γ
( y
w

)1/γ
+ ϱ
)
z

and yz, respectively, where z ∈ [0, 1] is an additional choice variable. The original model is

subsumed by these functional forms with the additional constraint on z, i.e., it is an indicator

function of y > 0.

The notion of welfare is exactly as in the benchmark, and the characterization of incentive

constraints is similar to the benchmark: w ∂vs(w)
∂w =

(
ys(w)
w

)1/γ
zs(w). Solve for (cs, ys) as a

function vs, ∂vs

∂w and zs to obtain that the following expression for tax revenues from singles

with type w:

ys(w)zs(w) − cs(w) = w1+γ

(
∂vs(w)

∂w

)γ

(zs(w))1−γ − ϱzs(w) − γw
∂vs(w)

∂w
. (85)
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Clearly, for fixed vs, it is optimal to select zs that pointwise maximizes (85) as it improves

total revenues available for redistribution. The reader can verify that

ψ

[
w1+γ

(
∂vs(w)

∂w

)γ]
= max

zs∈[0,1]
w1+γ

(
∂vs(w)

∂w

)γ

(zs)1−γ − ϱzs =

=

γ
(
1−γ
ϱ

)(1−γ)/γ
w(1+γ)/γ ∂vs(w)

∂w , w1+γ
(
∂vs(w)
∂w

)γ
≤ ϱ

1−γ ,

w1+γ
(
∂vs(w)
∂w

)γ
− ϱ, w1+γ

(
∂vs(w)
∂w

)γ
≥ ϱ

1−γ .
(86)

The exactly same construction applies to married, thus the economic output S (equation

(47) in the benchmark) can be succinctly expressed as follows:

S =
µ

2

∫ 2∑
i=1

(
ψ

[
w1+γ
i

(
∂vm(w)

∂wi

)γ]
− γwi

∂vm (w)

∂wi

)
F (dw)+

+ (1 − µ)

∫ (
ψ

[
w1+γ

(
∂vs(w)

∂w

)γ]
− γw

∂vs(w)

∂w

)
G(dw). (87)

Following Section 9.1, the relaxed problem is exactly as in 9.1 but now S is given by (87).

The advantage of pre-solving for zs and zm is that the relaxed problem becomes a concave

program in vs , vm and can be studied along the lines of the proof of Proposition 2.

We now derive and further analyze the set of necessary and sufficient conditions for opti-

mality. As in the proof of Proposition 2, marginal taxes and distortions for singles and married

can be studied in isolation. Observe that ψ is continuously differentiable. Set λs to be

λs(w) :=


(
1−γ
ϱ

)(1−γ)/γ
w1/γ − 1, w1+γ

(
∂vs(w)
∂w

)γ
≤ ϱ

1−γ ,

wγ
(
∂vs(w)
∂w

)γ−1
− ϱ, w1+γ

(
∂vs(w)
∂w

)γ
≥ ϱ

1−γ ,

and define λm analogously as a function of vm. With these notations, the variational conditions

listed in the proof of Proposition 2, that is (53), (56), (53), (57), are necessary and sufficient

provided that conditions (A1)-(A5) hold.

We claim that the optimum coincides with the benchmark above certain thresholds. Specif-

ically, there are numbers ws for singles and wm for married so that a single (married) person

works if and only if wi ≥ ws (wi ≥ wm, resp.); moreover, above these cut-offs distortions

are exactly as in the benchmark. Recollect that, by Proposition 3, the optimal benchmark

distortions are λ#(w) and
(
1
2λ

#(w1),
1
2λ

#(w2)
)
, where λ# is defined in Proposition 1. Since

the first-order approach is valid, that is both conditions of Proposition 1 hold, there are unique

thresholds such that welfare gains in (58), (59) at the margin are exactly ϱ, i.e.,

ϱ = (1 − γ)ws

(
ws

1 + λ#(ws)

)γ/(1−γ)

, ϱ = (1 − γ)wm

(
wm

1 + 1
2λ

#(wm)

)γ/(1−γ)

. (88)
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Consider vs so that ∂vs(w)
∂w = 0 for w < ws, which gives λs(w) =

(
1−γ
ϱ

)(1−γ)/γ
w1/γ − 1, and

λs(w) = λ#(w) otherwise. Then, λs constructed in this way satisfies (A1)-(A5); moreover,

since λs(w) ≤ λ#(w) for all w, (53) and (54) hold. Indeed, for any function v̂s ∈ V s,∫
γwλs(w)

∂v̂s(w)

∂w
G(dw) +

∫
(α(w) − 1)v̂s(w)G(dw) =

=

∫
γw

λs(w) − λ#(w)︸ ︷︷ ︸
≤0

 ∂v̂s(w)

∂w︸ ︷︷ ︸
≥0

G(dw) ≤ 0,

which shows (54). By construction,
(
λs(w) − λ#(w)

) ∂vs(w)
∂w = 0 for all w, thus (53) is satisfied

as well.

The argument for married individuals is identical. Consider vm(w) = ṽm(w1) + ṽm(w2) for

ṽm that satisfies ∂ṽm(wi)
∂wi

= 0 for wi < wm, which gives λmi (w) =
(
1−γ
ϱ

)(1−γ)/γ
w

1/γ
i − 1, and

λmi (w) = 1
2λ

#(wi) otherwise. These distortions satisfy (a)-(e). Furthermore, the condition for

validity of the first-order approach in Proposition 1 implies that λmi (wi) ≤ 1
2λ

#(wi) for all wi.

As a result, for any function v̂m ∈ V m, potentially non-separable,∫ 2∑
i=1

γwiλ
m
i (w)

∂v̂mi (w)

∂wi
G(dw) +

∫
(αm(w) − 1)v̂m(w)G(dw) =

=

∫ 2∑
i=1

γw

λmi (w) − 1

2
λ#(wi)︸ ︷︷ ︸

≤0

 ∂v̂m(w)

∂wi︸ ︷︷ ︸
≥0

F (dw) ≤ 0,

which shows (57). By construction,
(
λmi (w) − 1

2λ
#(wi)

) ∂vm(w)
∂wi

= 0 for all w, thus (53) is

satisfied as well.

To sum up, we identified the solution of the linear relaxation in which there are two thresh-

olds, ws and wm, such that a person works if and only if his/her productivity is above own

threshold. Since the optimal labor participation decisions are integral, this mechanism also

solves the original model with extensive margin. Furthermore, since λ# is nonnegative due to

monotonicity of α, examination of (88) makes it clear that the threshold for married is lower

than one for singles due to lower distortions. The optimal marginal taxes on those who work

are exactly as in the benchmark with random matching.
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11.7 Selection into marriage

The main conceptual difference here is that there are two marriage cut-offs, µl and µh. (6) has

to hold for each cutoff individually, that is

Φ(µq) =
1

2

∫
vm(w)Hq(dw1)Hq(dw2) −

∫
vs(w)Hq(dw) for q = l, h. (89)

On top of the distributions of productivities are endogenous. According to Bayes rule, they

satisfy

(1 − µ)Gs(w) =
1 − µl

2
Hl(w) +

1 − µh
2

Hh(w),

(1 − µ)F (w) =
µ

2
Hl(w1)Hl(w2) +

µh
2
Hh(w1)Hh(w2),

where µ = µl+µh
2 is the economy-wide marriage rate.

To ensure that the relaxed problem is well-defined, we require
∫
w1/(1−γ)Hq(dw) < ∞ for

each signal. Then, it is easy to see that, each marriage rate must be interior and conditions

(a), (b) of Lemma 12 hold for each signal, i.e., with G = Hq and F = H2
q .

We now study the relaxed problem for fixed µl, µh ∈ (0, 1). In contrast to Section 9.1,

the resource constraint and (6) cannot be eliminated, we therefore use the Lagrange multiplier

approach. For fixed µl, µh ∈ (0, 1), the problem is concave. So, let δl, δh to be Lagrange

multipliers equations on (6) and η be the multiplier on (45). Existence of δl, δh and η is

standard, e.g., see Chapter 8 in Luenberger (1997); moreover, it is immediate that η = 1. To

sum up, ignoring the terms that do not depend on vs, vm, the Lagrangian can be written as

follows:

µ

2

∫
(αm(w) − 1)vm(w)F (dw) + (1 − µ)

∫
(α(w) − 1)vs(w)Gs(w) + S+

+
∑
q=l,h

δq

(∫
vs(w)Hq(dw) − 1

2

∫
vm(w)Hq(dw1)Hq(dw2)

)
,

where S is defined in (47).

Our analysis of the necessary conditions on vs, vm in the proof of Proposition 2 goes without

changes, and it gives the following analogs of (49), (50):

∂ (γwλs(w)gs(w))

∂w
= (α(w) − 1) gs(w) +

∑
q=l,h δqhq(w)

1 − µ
, (90)

2∑
i=1

∂ (γwiλ
m
i (w)f(w))

∂wi
= (αm(w) − 1) f(w) −

∑
q=l,h δqhq(w1)hq(w2)

µ
. (91)
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Differential equations (90) and (91), which are necessary for optimality for fixed marriage

rates, imply that the optimal distortions satisfy two equations in the text:

λs,∗(t) =
1 − Es [α|wi ≥ t]

γθs (t)
+

1

1 − µ∗
δh(1 −Hh(t)) + δl(1 −Hl(t))

γθs (t)
,

E[λm,∗
i |wi = t] =

1 − Em [αm|wi ≥ t]

γθm (t)
− 1

µ∗
δh(1 −Hh(t)) + δl(1 −Hl(t))

γθm (t)
,

where we used the Coarea Formula with Q = wi to obtain the second expression.

11.8 Gender differences

To ensure that the relaxed problem is well-defined, we require
∫
w1/(1−γ)Gi(dw) <∞ for i = 1, 2.

Since there may be different numbers of males and females on the marriage market, we allow

for rationing to clear it. Specifically, we return agents with the highest values of preference

shocks of the “surplus” gender back to the singlehood. As before, let µ be the marriage rate

and suppose that j is the “deficit” gender, which simply means that ∆ :=
∫
vsj (wj)Gj(dwj) −∫

vs−j(w−j)G−j(dw−j) ≥ 0. Then, the marriage rate is given by

Φ(µ) =
1

2

∫
vm(w)F (dw) −

∫
vsj (wj)Gj(dwj). (92)

The resource constraints reads as

S ≥ µ

2

∫
vm(w)F (dw) + (1 − µ)

∫
vsj (wj)G(dwj) − (1 − µ)

∆

2
,

and S is defined as in the benchmark (equation (47)) but allowing for differential treatment of

single males and single females.

It is easy to see that the modified resource constraint must bind, thus when combined with

(92), it can be solved uniquely for expected utilities of married and singles j as a function of

Φ(µ), S and ∆. Substituting these expected utilities into the welfare criterion, we obtain

W =
µ

2

∫
(αm(w) − 1) vm(w)F (dw) +

∫ 1

µ
Φ(ε)dε+

1 − µ

2

∫
(αj(wj) − 1) vsj (wj)Gj(dwj)+

+
1 − µ

2

∫
(α−j(w−j) − 1) vs−j(w−j)G−j(dw−j) + S, (93)

which is independent of ∆. We conclude that it is immaterial which gender is in “deficit”,

and there is always a solution in which the market clears exactly, i.e., ∆ = 0, when taxes are

allowed to be gender-specific.

The rest of the argument is exactly the same as in the proof of Proposition 2.
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11.9 Optimal restricted taxation

11.9.1 Proof of Lemma 11

Proof. Part (a). Since taxes are gender-neutral, vsM = vsF . In contrast to Section 11.8, rationing

will play a role to clear the marriage market, i.e., it is not longer the case that there are multiple

values of ∆ that are consistent with the optimum.

In order to derive the optimal taxes, we first “symmetrize” the economy. Define the sym-

metrized versions of distributions Fnrl and Gnrl by permuting genders at random, that is

Fnrl(wM , wF ) = F (wM ,wF )+F (wF ,wM )
2 and Gnrl(w) := GM (w)+GF (w)

2 . Then, define the sym-

metrized versions of Pareto weights αm,nrl and αnrl by permuting genders at random, that

is

αnrl(w) =
αM (w)gM (w) + αF (w)gF (w)

2gnrl(w)
,

αm,nrl(wM , wF ) =
αm(wM , wF )f(wM , wF ) + αm(wF , wM )f(wF , wM )

2fnrl(wM , wF )
.

It is routine to verify that if vm is a symmetric function and vsM = vsF , welfare W defined in

(93) can be expressed as

µ

2

∫ (
αm,nrl(w) − 1

)
vm(w)Fnrl(dw)+(1−µ)

∫ (
αnrl(w) − 1

)
vs(w)Gnrl(dw)+

∫ 1

µ
Φ(ε)dε+S.

Recollect that under gender-neutrality, we are effectively back to the symmetric setting of

Section 9.1. So, Proposition 2 can be directly applied, and it gives

λs,nrl,∗(t) =
1 − Enrl

[
αnrl|w ≥ t

]
γθnrl(t)

, E
[
λm,nrl,∗
j |wi = t

]
=

1 − Enrl
[
αM (wM )+αF (wF )

2 |wj ≥ t
]

γθnrl(t)
.

Then, direct verification concludes Part (a) of the lemma.

Part (b). In addition, to gender-neutrality we require taxes to be separable. This simply

means that vm(wM , wF ) = v̂m(wM )+ v̂m(wF ) for some function v̂. Recall that αm(wM , wF ) =
αM (wM )+αF (wF )

2 ; thus, for additively separable and symmetric vm we obtain∫ (
αm,nrl(w) − 1

)
vm(w)Fnrl(dw) =

= 2

∫ (
Enrl

[
αM (wM ) + αF (wF )

2
|wj = w

]
− 1

)
v̂m(w)Gnrl(dw).

Clearly, vm enters the total economic output S only through v̂m as ∂vm(wM ,wF )
∂wj

=
∂v̂m(wj)

∂wj
.

So, we reduced the analysis of individual earnings-based taxation of married individuals to the
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analysis of singles. Following the argument in Proposition 2, we obtain

λm,ind,∗(t) =
1 − Enrl

[
αM (wM )+αF (wF )

2 |wj ≥ t
]

γθnrl(t)
.

Then, direct verification concludes Part (b) of the lemma.

Part (c). If taxes are family-earnings based, then vm is measurable only w.r.t. to r, i.e.,

vm(w) = v̂m(R(w)) for some v̂, hence∫
(αm(w) − 1) vm(w)F (dw) =

∫
(E [αm|R = r] − 1) v̂m(r)F̃ (dr).

By construction, E [αm|R = r] and F̃ are symmetric, so there is no need to further symmetrize

these objects. In order to make our previous argument aplicable, we need to show that vm

enters the total economic output S only through v̂m. Indeed, since wM
∂R
∂wM

+ wF
∂R
∂wF

= r,

2∑
j=1

(
w1+γ
j

(
∂vm (w)

∂wj

)γ

− γwj
∂vm (w)

∂wj

)
= r1+γ

(
∂v̂m(r)

∂r

)γ

− γr
∂v̂m(r)

∂r
.

Similarly to Part (b), we reduced the analysis of family-earnings based taxation of married in-

dividuals to the analysis of singles. Following the argument what was used to prove Proposition

2, we obtain

λm,fam,∗(r) =
1 − E [αm|R ≥ r]

γθr(r)
.

Finally, note that the first equality in this part of the lemma is (71) can be derived using the

Coarea formula with Q = R.

12 Quantitative analysis

12.1 Calibration

We use data from the 2020 CPS survey. In our dataset, we have pre-tax earnings of 11087

couples, each consisting of two individuals who (a) have a spouse in the same household, (b)

worked for at least 20 weeks in 2020, (c) are 25-65 years old. Our measure of earnings includes

only wage earnings. The sample is representative of approximately 42 million people.

We suppose that the data comes from a symmetric environment with γ = 1/4; thus, we

symmetrize the dataset by creating one more copy of every household in which the identities

of two spouses are interchanged. This gives us 2×11087 couples with identical distributions of

earnings for each spouse and the same dependence patterns as before. We normalize earnings

by 100 thousand so that the average value of individual earnings in the dataset equals 0.75.
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Following Guner et al. (2014) and Heathcote et al. (2017) we assume that the data is

generated with the following tax function: T (y1, y2) = (y1 + y2) − ν(y1 + y2)
1−τ . Guner et al.

(2014) estimated (τ, ν) for married couples using the IRS data in which earnings are normalized

by 53 thousand. Since we normalize earnings by 100 thousand, we adjust their estimate, which

is τ = 0.06 and ν = 0.91, so that total tax bills in dollar terms are identical. The parameter τ

doesn’t need any adjustment but ν = 0.91 × ( 53
100)τ .

Given the assumed log-linear tax schedule, each couple solves

max
(y1,y2)≥0

ν (y1 + y2)
1−τ −

2∑
i=1

γ

(
yi
wi

)1/γ

,

which allows us to express unobserved productivites as a function of observed earnings (equa-

tion (43)) and construct the empirical distribution of productivities.

We calibrate a marginal distribution of productivities and their copula separately. Recall

that the marginal G is assumed to follow a PLN distribution with parameters (a, η, σ) ∈
R++ × R× R++, that is

G(t) = Φ

(
ln t− η

σ

)
− t−a exp

(
aη + a2σ2/2

)
Φ

(
ln t− η − aσ2

σ

)
.

Our first target moment is the Pareto statistic (computed with 183 observations at t that

corresponds to 99% percentile of the empirical cdf). In our sample this moment equals to 2.95,

and since

lim
t→∞

E [wi|wi ≥ t]

E [wi|wi ≥ t] − t
= a,

we set a to 2.95. The second target moment is the Gini coefficient. It equals to 0.31 in the

dataset. It can be shown (e.g., see Colombi (1990)) for a PLN distribution it is given by

2Φ

(
σ√
2

)
− 1 + 2

ea(a−1)σ2

2a− 1
Φ

(
(1 − 2a)σ√

2

)
,

where Φ is the standard normal distribution. This gives us σ = 0.4. Our final target moment

is the mean value of individual productivities that equals 0.81 in the sample. Using the closed

form expression

E [wi] =
a

a− 1
eµ+σ2/2,

we get µ = −0.71.

As for the copula of (w1, w2), we calibrate it using the Kendell’s tau dependence coefficient

(see Chapter 5 in Nelsen (2006)), which is a rank measure of concordance, theoretically:

Pr ((w1 − w̃1) (w2 − w̃2) > 0) − P ((w1 − w̃1) (w2 − w̃2) < 0) ,
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where (w1, w2) and (w̃1, w̃2) are independent copies of productivities. Clearly, this statistic

only depends on the underlying copula, not on G, and closed form expressions are available for

many copulas. In our dataset, it equals to 0.21. We tried several copulas and found that the

Gaussian one fits the data very well. For the Gaussian copula, Kendell’s tau is given by 2 arcsin ρ
π ,

where ρ is its correlation parameter. This gives us ρ = 0.33. In Section 12.4 of the appendix

we re-calibrate the model to the FGM copula, i.e., C (u1, u2) = u1u2 (1 + ρ (1 − u1) (1 − u2)),

for which Kendell’s tau is given by 2ρ
9 , thus ρ = 0.96.

12.2 Numerical approach

In this section, we overview the numerical approach that we used to find the optimal taxes.

First of all, we discretize the problem using a finite logarithmic grid of 399 equally spaced

productivities. The grid is logarithmic in the sense that a ratio of two consecutive points is

constant. This allows to improve accuracy at the left tail and capture the thick right tail. Let{
w1, . . . , w400

}
, where w1 = 0.12 and w400 = 10, be this grid. The 400th point is added to

ensure that our discretized relaxed problem can approximate the original relaxed problem in

which the domain is unbounded. It will be convenient to also define w0 := 0.

We numerically solve a relaxed problem that only contains downward incentive constraints,

one for each spouse, that is

max
v,y≥0

400∑
n1,n2=1

v (wn1 , wn2) (αm (wn1 , wn2) − 1) f (wn1 , wn2)+

+
2∑

i=1

400∑
n1,n2=1

(
yi (wn1 , wn2) − γ

(
yi (wn1 , wn2)

wni

)1/γ
)
f (wn1 , wn2)

subject to the following set of incentive constraints: for all ni = 2, . . . , 400, n−i = 1, . . . , 400

and i = 1, 2,

v (wni , wn−i) ≥ v (wni−1 , wn−i) + γyi
(
wni−1, wn−i

) ((
wni−1

)−1/γ − (wni)−
1/γ
)
.

In this problem, f is set to be

f (wn1 , wn2) =


Pr
(
wni−1 < wi ≤ wni ∀i

)
, ni, n−i < 400;

Pr
(
wni−1 < wi, w

n−i−1 < w−i ≤ wn−i
)
, ni = 400 > n−i;

Pr
(
wni−1 < wi ∀i

)
, ni = n−i = 400.

And, αm is normalized so that
∑400

n1,n2=1 α
m (wn1 , wn2) f (wn1 , wn2) = 1.

The solution to the relaxed problem is easy to find, and it is always the case that all

incentive constraints are binding. Given this solution, we then numerically verify all remaining

(global) incentive constraints. In all cases, we found that the first-order approach holds.

78



12.3 Comparison of distortions

Figure 6 plots the optimal distortions λ∗i (·, w−i) when w−i is fixed at its median value, i.e., 0.66,

against the average distortions E [λ∗i |wi = t]. For both the Gaussian and FGM copulas, the

average distortions (red dashed lines) are very close to the optimal distortion with w−i = 0.66

(solid blue lines).

(a) Gaussian copula (b) FGM copula

Figure 6: Comparison of average and pointwise distortions at 50th percentile

12.4 FGM copula

In this section, we report the optimal taxes when the empirical distribution of productivities

is calibrated to the FGM copula. Recall that the FGM copula is defined to be C(u1, u2) =

u1u2 (1 + ρ(1 − u1)(1 − u2)), where ρ ∈ [−1, 1]. We calibrate parameter ρ to be 0.96, matching

the Kendell’s tau statistic. Figure 7 shows the FGM copula fits isoquants of the empirical

distribution fairly well (Panel (b)), but it does not match the speed of convergence to tail-

independence (Panels (c) and (d)).
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(a) i’s marginal tax given y−i (b) i’s marginal tax given y−i

yi

Figure 8: Optimal taxes, m = 0.35 and k = 1

(a) Marginal distributions, G(t) (b) Loci of copulas quantiles (u1, u2) satisfying C(u1, u2) = q
for q 2 {0.1, ..., 0.9}

(c) Left-tail statistics C(u,u)
u

(lines with markers) and
ln u

ln C(u,u)
(lines without markers)

(d) Right-tail statistics C(u,u)
u

(lines with markers) and
ln u

ln C(u,u)
(lines without markers)

-

-

Figure 7: Empirical and calibrated joint distributions of productivities

Figure 8 depicts the optimal taxes computed under the FGM copula in our baseline spec-

ification with separable weights and not too redistributive planner. The optimal taxes are

much more negatively jointed at the top as compared to the optimal taxes computed under

the Gaussian copula (Figure 3). Consistent with Proposition ?? the sign of jointness flips at a

threshold, and it is negative (positive) for all large (small) wi.

Figure 9 illustrates robustness of the optimal taxes. Qualitatively, redistributiveness and

modularity of α have identical implications for the optimal taxes under the FGM copula and

the Gaussian copula (Figure 4). First, if the planner is more redistrubutive, then the optimal
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(a) i’s marginal tax given y−i, m = 1.5
and k = 1

(b) i’s marginal tax given y−i, m = 0.35
and k = 2

(c) i’s marginal tax given y−i, m = 0.35
and k = 0

(d) i’s marginal tax given y−i

yi
, m = 1.5

and k = 1

(e) i’s marginal tax given y−i

yi
, m = 0.35

and k = 2

(f) i’s marginal tax given y−i

yi
, m = 0.35

and k = 0

Figure 9: Optimal taxes, robustness to m and k

taxes are larger and negative jointness occurs at lower levels. Second, supermodularity amplifies

negative jointness at the top, and submodularity amplifies positive jointness at the bottom.

Figure 10 plots the optimal taxes as a function of the total family earnings and the share

of the secondary earner. As in the case of the Gaussian copula (Figure 5), the optimal taxes

vary substantially with the share of the secondary earner.

81



(a) U.S. taxes implied by the estimated HSV model (b) Optimum, m = 0.35 and k = 1

(c) Optimum, m = 1.5 and k = 1 (d) Optimum, m = 0.35 and k = 2 (e) Optimum, m = 0.35 and k = 0

Figure 10: Marginal taxes on family earnings
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