
Hard information design*

Sulagna Dasgupta Ilia Krasikov Rohit Lamba

July 2022

Abstract

Many transactions in the marketplace rely on hard (or verifiable) information

about the underlying value of the intended exchange, typically through certification—

housing, diamonds, bonds being cases in point. What is the class of Pareto effi-

cient certifications for such scenarios? This paper studies the canonical monopolistic

screening problem, and models certification as hard information produced through

a test to be flexibly chosen pre-trade. It argues that Pareto efficient tests take a simple

form—they produce certification with a partitional structure, often with one or two

thresholds. This claim is shown to be true for both the linear trading model and the

non-linear pricing model.

1 Introduction

Certification of the value or quality of products pre-trade is ubiquitous. We see this in
housing markets, market for jewellery, bond markets, and labor markets. Certification is
typically verifiable, its outcome is hard information that cannot be fudged. And it often
employs simple tests that result in a coarse set of attainable grades and corresponding
prices. The objective of this paper is to model hard information design in the context of a
standard trading problem, i.e. monopolistic screening, and provide a foundation for such
simplicity.

To that end, we study the following stylistic model: A buyer and a seller start with
a common prior on the buyer’s value from trade, which will often be referred to as the
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buyer’s type. The seller’s cost of production is common knowledge. The buyer chooses a
statistical test, the outcome of which is privately observed.1 The test produces hard infor-
mation in the sense of Dye [1985]—with some probability it fails to produce a certificate,
and with complementary probability it generates a certificate with a verifiable score. The
probability of failure and the choice of scores can be arbitrarily relatedwith the underlying
value of the buyer. An outcome has two components—whether a certificate is generated,
and the score printed on it, in case the certificate is generated. The seller observes the
chosen test but not the outcome, and commits to a pricing mechanism as a function of
the information presented by the buyer. If test does indeed generate a certificate, the
buyer decides whether or not to present it to the seller. Finally, prices and allocations are
implemented as a function of what the buyer presents, and payoffs are realized.

The problem has two connected components— the information production part and
the price discrimination part. Themain result of the paper is that the information produc-
tion part is partitional, typically with one or two thresholds, which divide the valuation
space into two or three regions, respectively. In the first case, the optimal test produces
a "high" score or no score. All buyer types above the single threshold get a high score
and all buyer types below the threshold do not get a certificate. In the second case, the
optimal test produces a "high" score, "low" score or no score. All buyer types in the top
most region get a high score, in the bottom most region get a low score and those in the
middle get no certificate.

In the second part of the problem, the seller responds to the chosen test through a set
of score contingent prices. Compute the expected value of the buyer types who do not
get a certificate and call this the base price. When a test with a single threshold is chosen,
the seller optimally sets the score contingent price for the top region to be the same as
the price of trade for no certificate. This culminates essentially in a posted price which
is set equal to the base price. By construction, this extracts full surplus from the buyer
types in the bottom region with no certificate, since the posted price exactly equals their
expected valuation. It also provides (information) rent to those in the top region with the
high score, since their expected valuation is strictly higher than the posted price.

When a test with two thresholds is chosen, the seller still offers the base price, and
in addition, may offer another price with a discount. Buyer types in the top and middle
region trade at the base price, and those in the bottom region are targeted with the dis-
counted price, which is set exactly equal to the expected valuation of the bottom region.
The seller, of course, trades with the bottom region only if the discounted price is greater

1Later we will vary the bargaining power of the two parties on the choice of test, thereby mapping the
Pareto frontier.

2



than the cost of production. Full surplus is extracted from the types in the middle and
bottom regions, and rent is paid to those in the top region.

The intuition for the result is as follows. Since information is verifiable, if the buyer
shows the certificate, the both parties have a common posterior of the buyer’s valuation,
and the seller sets a price exactly equal to the posterior mean extracting full surplus. Thus,
the measure of values for which the test proves inconclusive (i.e. produces no certificate)
must be positive; otherwise the seller extracts the entire surplus.

In addition, note that the seller does not have to trade with buyer types who do not
show a certificate. So, the buyer must also choose a test in response to which the seller
finds it profitable to trade with buyers who do not have a certificate at what we called
the base price. Otherwise, again, only buyers with a certificate trade and full surplus is
extracted by the seller. Call the enticing of the seller to trade with buyers who do not
produce a certificate the seller’s constraint.

Now, assume the cost of the seller is zero, so to trade is always efficient. At the op-
timum, trade will indeed be efficient, i.e. happen with certainty. For starters, ask: for
any arbitrary test, what is the pattern of trade? All buyer types whose (expected) value
exceeds the base price will not show the certificate, instead trade at the base price, and
gain some rent. Those with scores that imply a posterior mean lower than the base price
will be offered a discounted price that makes them exactly indifferent, i.e. binds their
participation constraint, so they trade too. At the optimum, the value of the base price is
then pinned down by binding the seller’s constraint: the seller’s profit from trading with
types that do not have a certificate equals the rent she gives up to the buyers whose value
exceeds the base price. Thus, the seller and all buyer types want to trade, hence trade is
efficient.

The best way for the buyer to generate efficient trade while maximizing his payoff
and respecting the seller’s constraint is to select a one threshold test. Since all buyer
types below the base price get full surplus extracted by the seller, the buyer can instead
combine these types in the region with no-certificate. This helps the buyer by reducing
the base price, so that the high types get the highest possible information rent. The seller’s
constraint then determines the single threshold that partitions the type space.

What score should be printed on the certificate for the types in the top region? The
exact value is irrelevant, because the buyer always chooses the base price, since it can be
claimed that the test was inconclusive. So coarsely reporting that the values lie in this top
region is sufficient. We call this the “high score”. Thus effectively, the buyer endogenously
turns the problem into a two-types screening problem where the individual rationality of
the “low type” and the incentive constraint of “high type” bind.
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Finally, suppose that the seller’s cost is positive. Then trade with buyers whose value is
lower than the seller’s cost is inefficient. If we continue with the single threshold test, then
at some high enough cost, the seller’s constraint cannot be satisfied because the measure
of inefficient trades is now too large and the seller will choose not to trade with buyers in
the bottom region, that is those who do not show a certificate. This leads to the creation
of a third bottom most region where a certificate is issued, which is meant preclude (at
least some) inefficient trades.

Thus, for a low enough cost, the optimal information structure partitions the valua-
tion space into two regions and the seller simply posts one price. For a high enough cost,
the optimal information partitions the valuation space into three regions, where the top
two regions trade at the posted price and the bottom region may be offered discounts if
trade with those types is profitable for the seller.2

Our model departs from both the traditional monopolistic screening problem (Mas-
Colell, Whinston, and Green [1995] Chapters 13-14) and the more recently explored in-
formation design problem (Bergemann and Morris [2019]). In the former, the initial allo-
cation of information is fixed and also soft, in that the buyer can report any information
to the seller. In the latter, the extent of information asymmetry before physical exchange
is chosen as part of the design problem. The information though is still soft, released to
the agent in the form of a signal, which can, again, be misreported. In a closely related
paper, Roesler and Szentes [2017] study the monopolistic screening problem with soft
information design. They find that the buyer optimally designs an information structure
that generates a truncated Pareto distribution of posterior means, in response to which a
seller chooses an optimal posted price.

To varying degrees, the question of hard information design has been explored in
the context of disclosure games (eg. recently in Ben-Porath, Dekel, and Lipman [2018],
DeMarzo, Kremer, and Skrzypacz [2019], Shishkin [2022]). However, we know of no
study that situates the endogenous generation of such hard information in a standard price
discrimination or mechanism design framework. Or any study that allows the choice of
hard information to be fully flexible. These forms our starting point. We bring together
two canonical models—monopolistic screening and Dye-hard evidence, using tools from

2To be sure, the optimal information structure is not unique. The paritional nature of it divides the
type space into three regions. The middle region does not produce any certificate. Then the Blackwell most
informative optimal information structure prints on the certificate the exact value of the buyer in the top
and bottom regions. Correspondingly the seller offers the base price in the middle region and a price exactly
equal to the score printed on the certificates in the top and bottom regions. Any independent garbling of
the top and bottom regions is also optimal. The particular optimal information structure we emphasize is
the Blackwell least informative–it prints on the certificate only the information whether the value is the top
or bottom region.
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information design.
Two features of ourmodel lead to the simplicity of the optimal information structure—

the hardness of information production and the seller’s ability to commit to a pricing
mechanism as a function of the test. Relaxing either takes the model back to the soft in-
formation benchmark, wherein the optimal information structure constitutes a distinct
signal distribution that targets a truncated Pareto distribution of posterior means (as in
Roesler and Szentes [2017]). Intuitively, the hardness of information simplifies the buyer’s
underlying incentive problem of what can be misreported to the seller, and the commit-
ment power makes the seller’s prices - which are tagged to verifiable information - credible
form the buyer’s perspective.

Broadly, in comparison to the soft information benchmark, the hardness of informa-
tion hurts the buyer and benefits the seller in an ex-ante sense, even though the buyer
is allowed to choose any feasible test. In the mechanism design lexicon, whatever gain
accrues to the buyer from choosing the optimal test is offset by the fact that instead of
a continuum of incentive constraints, the seller now has to pay him the shadow price of
only one, i.e. whether the buyer produces the certificate with the test score or not.

So far we have talked about the buyer-optimal information and associated pricing
mechanism. What if due to protocols outside the purview of the model (e.g. for regu-
latory reasons), the seller can influence the chosen test? To accommodate such a line of
inquiry, we characterize the Pareto frontier of the test design problem. The finding here
too is that, any pair of buyer and seller payoffs on the Pareto frontier can be generated by
a partitional informational structure with few thresholds, typically two, where scores are
produced for types in the top and bottom regions, and the middle region does not pro-
duce any certificate. The structure of the thresholds moves with the extent of bargaining
power of the seller. So does the total value of the surplus and its split between the buyer
and the seller.

The Pareto frontier has two parts— a linear part and a potentially concave part. In
the linear part, the total value of the surplus is at the efficient level. If the cost of the
seller is zero, trade is efficient and the Pareto frontier is simply a straight line. If the seller
has most of the bargaining power in the choice of the test, the efficient surplus is again
attained irrespective of the cost, and most of it is extracted by the seller through prices. In
fact, the bottom region now produces two scores, one below and one above the marginal
cost. This ensures the seller knows whether trades are above or below the cost, so the
ones below can be precluded.

When the cost is high enough and buyer hasmost of the bargaining power in the choice
of the test, a trade-off emerges between revealing enough information about valuations
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below the marginal cost so that trade is efficient, and hiding enough information about
the buyer’s value from the seller. This trade-off gives curvature to the Pareto frontier even
when preferences are linear, and culminates in a total surplus below the efficient level.

Finally, we consider a general model that subsumes within it the linear model dis-
cussed so far, and the non-linear pricing problem in the spirit of Mussa and Rosen [1978]
which features the intensive margin of interior supply by the seller. It also accommodates
arbitrary prior distributions - allowing for discrete, continuous or mixed supports - and
costs of certification for the buyer. We completely characterize the class of information
structures that achieve payoffs on the Pareto frontier for this general model. These maxi-
mally partition the buyer’s type space with four thresholds or into five regions. The extra
regions can potentially be used when the seller has enough bargaining power to destroy
some information rent for the buyer while increasing or in the least not shrinking the
total surplus.

With some more structure on the problem, the optimal information structure can be
more precisely characterized. To that end, we study the uniform linear-quadratic model,
where the prior is uniform, preferences are quasi-linear in transfers, and the seller’s cost
is quadratic. The class of tests that characterizes the Pareto frontier is two-threshold.
However, the added curvature ensures that the test implementing a specific point on the
Pareto frontier is now unique. It necessarily reveals the exact value in the bottom and top
regions and does not produce any certificate in the middle region. So, the seller supplies
the efficient quantity in the bottom and top regions, and supplies the associated “virtual
value", in the Myersonian sense, in the middle region. As before, total expected surplus is
extracted by the seller in the middle and bottom regions, but information rent is provided
to the buyer in the top region.

In summary, we introduce a model of screening with endogenous hard information
and show that the universe of tests on the Pareto frontier is simple. The reader can view
this as a conceptual counterpart to the soft information design benchmark. Both models
are perhaps an extreme version of the underlying reality of information production in
various transactions which involves some combination of soft and hard information. We
view our analysis as an invitation to further explore the space in between, and we believe
the monopolistic screening problem is a reasonable framework for this exercise.

Related Literature. Asymmetric information is central to our understanding of mar-
kets or lack thereof. Hayek [1945]’s foundational framing and Stigler [1961]’s call to
greater exploration were arguably turning points in the explosion of a field of inquiry oft
referred to as information economics. One of the workhorse tools in information eco-
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nomics is the classical monopolistic screening model (Mas-Colell, Whinston, and Green
[1995] Chapters 13-14). The goal of this paper is to add to this model the feature of pre-
trade production of hard information using statistical tests.

As in the simplest models of competitive equilibriumwhere the initial endowments of
goods drives prices (Arrow and Debreu [1954], and Varian [2020] Chapter 16), in infor-
mation economics the initial endowments of information drives the extent of inefficiency
in markets (Akerlof [1970], Spence [1973], and Rothschild and Stiglitz [1976]). In the
mechanism design literature, the initial endowment of information is commonly held
fixed (Myerson [1981]). In the rapidly growing field of information design the extent of
information asymmetry before physical exchange is intermediate and chosen as part of the
design problem (Kamenica [2019], Bergemann and Morris [2019], and Mathevet, Perego,
and Taneva [2020]). The information though is still soft, released to the agent(s) as a
signal, which is to be revealed truthfully under incentive and/or obedience constraints.

Several recent papers have explored distinct aspects of soft information design in price
or contract theoretic settings.3 As discussed, in this family of studies, Roesler and Szentes
[2017] is closest to our work. Also related is a concurrent paper, Bergemann, Heumann,
and Morris [2022], that studies a non-linear pricing problem á la Mussa and Rosen [1978]
(as in Section 8 here), where, in addition to the pricing mechanism, the seller can also
design soft information for the buyer without observing it directly. It finds sufficient
conditions under which a coarse partition of the buyer’s type space is optimal; though
the finer structure of information revelation and subsequent pricing contracts are quite
different from ours.

In modeling hard information, we follow the classical approach à la Dye [1985] in that
verifiable information is produced with some probability bounded away form one. This is
a commonly invokedmethodology that allows us to sidestep the unraveling benchmark of
Grossman [1981] and Milgrom [1981]. In addition, this is also practically relevant in that
it provides the agent some property rights over their own information, as often discussed
in the literature on the economic of privacy (Acquisti, Taylor, and Wagman [2016]).

The role of hard information in the context of monopolistic screening has been ex-
plored most notably by Sher and Vohra [2015]. It assumes the buyer’s valuation to be pri-
vately known but allows him access to a rich evidence structure to present to the seller. It
then characterizes sufficient conditions on evidence structures under which simple mech-
anisms are optimal. The key difference between that model and ours is the endogenous

3See, for example, Bergemann, Brooks, and Morris [2015], Li and Shi [2017], Smolin [2020], Segura-
Rodriguez [2021], Halac, Lipnowski, and Rappoport [2021], Wei and Green [2022], Ravid, Roesler, and
Szentes [2022], Yang [2022], and Haghpanah and Siegel [2022] amongst others.
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generation of information and its subsequent connection with pricing, which is the focus
of this paper.

In recent work, verifiable information has been modelled through Dye hard evidence
in a disclosure game by Ben-Porath et al. [2018]. In their model, an agent (and also a chal-
lenger) chooses amongst projects with varying risk and the payoff depends on strategically
revealing information to an outside observer. Unlike in our framework, the structure of
evidence there is exogenous. DeMarzo et al. [2019] also study a disclosure game with an
exogenous set of tests in which sender follows a minimum principle: she chooses a test
which minimizes the asset’s value conditional on non-disclosure. This also culminates is
a simple pass-fail test being optimal in many situations. Shishkin [2022] partially endo-
genizes the evidence structure in the context of cheap talk style sender-receiver games.
In the language of our paper, the probability of no certificate (i.e an inconclusive test) is
exogenous and the main result there is that if this probability is below some threshold the
sender chooses a pass-fail test. In all of these papers, a fully flexible choice of test would
make the problem uninteresting, yielding the unraveling result in some form or another.4

All of these studies are complementary to ours, in that they model hard informa-
tion in the spirit of Dye and establish an underlying simplicity to information disclosure.
Though, to the best of our understanding, the full flexibility of the information structure,
and its interaction with a price discrimination problem is new here. Also, as mentioned
earlier, it is both the hardness of information and the seller’s commitment power that
lends simplicity to the tests in our model. If we took away the seller’s commitment, the
model reduces to a disclosure game with hard information. However, the optimal infor-
mation structure is no longer simple in the sense we describe, and goes back to the soft
information benchmark of Roesler and Szentes [2017]. Moreover, our proof techniques
are quite different, which may be useful in analyzing other models of screening with hard
information in contexts such as regulation, insurance, and markets for lemons.

Design of certification by a profitmaximizing intermediary has been studied in Lizzeri
[1999] and Ali, Haghpanah, Lin, and Siegel [2022], where the former looks at mandatory
disclosure and latter at voluntary disclosure. Lizzeri [1999] finds full information disclo-
sure with a high testing fee to be optimal. Ali et al. [2022] study theworst-case equilibrium
and find a truncated exponential distribution of posterior means to be optimal.5

Modeling hard information or evidence is a classical and still growing area of research
4See also Jovanovic [1982], Verrecchia [1983], Matthews and Postlewaite [1985], Jung and Kwon [1988],

and Shavell [1994] for early contributions on disclosure games with (exogenous) hard information, which
propose ways to break the unraveling result of Grossman [1981] and Milgrom [1981].

5See also Harbaugh and Rasmusen [2018] and Kartik, Lee, and Suen [2021] for related models of infor-
mation disclosure with certification and through intermediation.
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in economic theory. See Dekel [2016] for broad overview, Ben-Porath, Dekel, and Lip-
man [2021] for a general treatment on mechanism design with evidence acquisition and
Schweighofer-Kodritsch and Strausz [2022] for a statement of a general revelation princi-
ple for evidence games.

2 Model

2.1 Primitives

Consider a risk-neutral seller (she) who can produce an object for which there is a single
risk-neutral buyer (he). The buyer’s value from trade θ ∈ [0, 1] is distributed according
to a continuous cumulative distribution function F supported on the unit interval. The
seller’s marginal cost c ∈

[
0,E[θ]

)
is commonly known.

At the outset the buyer is uninformed about his valuation. He can learn θ by design-
ing a test which generates verifiable or hard information. Formally, a test is an experiment
which draws a signal s ∈ [0, 1] ∪ {∅} as a function of the underlying true state θ ∈ [0, 1],
according to a right-continuous, non-decreasing function H (·|θ) : [0, 1] → [0, 1] as fol-
lows:6

P(s ∈ [0, t ] |θ) = H (t |θ) ∀t ∈ [0, 1], P(s = ∅|θ) = 1 − H (1|θ).

Each signal s ∈ [0, 1] comes in the form of a certificate with the value of s written on it.
As a result, it can be verified ex-post by the seller. We shall refer to such signals as scores to
emphasize their ex-post verifiability. In contrast, the null signal s = ∅ is soft in the sense
that the buyer can always claim to have it.7

Given the test, the seller commits to a base price p and a set of score-contingent prices
p :=

(
p (s)

)
s∈[0,1] . For each s ∈ [0, 1], the buyer who wishes to purchase the good for the

price p (s) must show a certificate with the respective score. He can always opt for the
price p or choose not to trade. The restriction of the space of mechanisms to this form is
without loss of generality— we show in the appendix that the seller cannot gain by using
more complicated selling procedures.

To sum up, the timing of the game is as follows: 1) the buyer chooses a test and obtains
a signal, 2) the seller observes the test chosen by the buyer, but not his signal, and picks a
base price and a score-contingent price schedule, 3) the buyer with a score s ∈ [0, 1] can
trade for p (s), p or walk away, whereas the buyer with the null signal can either trade for
p or not trade at all. As is standard, we assume tie-breaking in favor of the buyer at the

6For each s ∈ [0, 1], the function H (s |·) is assumed to be measurable.
7Note that the null signal is informative about the buyer’s valuation whenever H (1|·) is non-constant.
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second stage, i.e., when indifferent among multiple prices, the seller charges the lowest
price.

2.2 Interpretation

Themodel here is admittedly stylized, chosen to provide a conceptual counterpart to both
standard monopolistic screening in mechanism design and optimal learning through soft
signals pre-trade in information design. In both types of models, there are two levels of
negotiations happening in the background. The first is who gets to choose the contract and
second, what learning technology is agreed upon. To keep things simple, the bargaining
power of setting the trading terms, i.e., prices, typically rests with the seller and the private
information on the surplus from trade is held by the buyer. The main departure here is
that this private information is neither fixed nor soft—it is learnt by the buyer through a
commonly known test whose result can be hidden but not falsified.

Since we eventually map the Pareto frontier of all tests, a simple interpretation is as
follows. A rating or certification agency is chosen to generate information on the surplus.
In the benchmark case we discuss first, the buyer is given the authority to choose the
agency, in other cases the agency is picked as a function of who amongst the seller and
buyer has a greater say in the negotiation. After the agency has been chosen, the seller
offers a menu of prices, which must always include a base price, at which the buyer can
trade by discarding the outcome of the test.

An added interpretation of arming the buyer with the ability to claim the null signal or
not produce a certificate is on grounds of privacy. After observing the outcome of the test,
the buyer may not want to share the information with the seller or in the least may not
want to allow it to be used in the transaction. This is in line with several recent analyses
of privacy as being the ability of agents to control, at least a part of, their information.8

3 Reduced tests

First, we reformulate the buyer’s learning problem. Note that both players’ utilities only
depend on the posterior mean of θ. Therefore, it is without loss of generality to focus on
distributions of posteriors means that can be generated by tests.9

8For example Acquisti, Taylor, andWagman [2016] write "Privacy is not the opposite of sharing—rather,
it is control over sharing. For the individual, therefore, the potential benefits of strategically sharing certain
data while protecting other data are quite apparent."

9Gentzkow and Kamenica [2016] term this the Rothschild-Stiglitz approach to information design.
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A reduced test is a non-decreasing, right-continuous function L : [0, 1] → [0, 1] that
records cumulative probabilities of posterior means when some certificate was obtained,
that is

P
(
E[θ |s] ∈ [0, t ], s ≠ ∅

)
= L(t ) ∀t ∈ [0, 1] .

Reduced tests contain all payoff-relevant information. For example, under L, the null
signal occurs with probability 1−L(1); and, if this probability is positive, then the buyer’s
posterior mean conditional on s = ∅, say θ (L), can be derived using the Bayes rule as:

θ (L) :=
E[θ] −

∫ 1
0 sdL(s)

1 − L(1) . (1)

We shall refer to θ (L) as the base score.
Of course, not every reduced test can be obtained from the prior. A reduced test L is

said to be feasible if there exists a test
(
H (·|θ)

)
θ∈[0,1] such that

L(s) =
∫ 1

0
H (s |θ)dF (θ) ∀s ∈ [0, 1], (2)∫ s

0
t dL(t ) =

∫ 1

0
θH (s |θ)dF (θ) ∀s ∈ [0, 1] . (3)

Eq. (2) ensures that the distribution of signals under the test
(
H (·|θ)

)
θ∈[0,1] is exactly the

one implied by L, and Eq. (3) ensures that every score is an unbiased signal, i.e., s = E[θ |s]
for all s in the support of L.

Simplifying further, a specific family of reduced tests is sufficient for characterizing
the whole set of feasible reduced tests. Given two thresholds 0 ⩽ α ⩽ β ⩽ 1, define a dual
threshold reduced test Lα,β as follows:

Lα,β (s) :=


F (s) if F (s) < α,

α if α ⩽ F (s) < β,

F (s) + α − β if F (s) ⩾ β.

(4)

Remark 1. Every dual threshold reduced test is feasible. In fact, Lα,β corresponds to the test
in which the buyer receives a perfectly informative score for F (θ) < α and F (θ) ⩾ β, and the
null signal otherwise, see Figure 1.
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θ
0 1F −1(α) F −1( β)

H (·|θ) = 1[θ,1] (·) H (·|θ) = 0 H (·|θ) = 1[θ,1] (·)

Figure 1: Generating the reduced test Lα,β .

The proposition below pins down the family of feasible reduced tests in terms of dual
threshold tests.

Proposition 1. A reduced test L is feasible iff there exist a dual threshold reduced test Lα,β
such that

L(1) = Lα,β (1), (5)∫ 1

0
sdL(s) =

∫ 1

0
sdLα,β (s), (6)∫ t

0
L(s)ds ⩽

∫ t

0
Lα,β (s)ds ∀t ∈ [0, 1] . (7)

To visualize the conditions of Proposition 1, suppose that the buyer’s value is uni-
formly distributed on the unit interval. In Figure 2, the black line is the prior cdf and the
blue one represents a feasible reduced test L(s) = λ s in which the buyer perfectly learns
his valuation with a certain constant probability λ ∈ [0, 1].

s
1

1

α

β

1 + α − β

F

Lα,β
L

Figure 2: Constructing feasible reduced tests.

According to Proposition 1, this reduced test can alternatively by obtained by garbling
some dual threshold reduced test Lα,β . Specifically, the thresholds α ⩽ β are uniquely
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determined by Eq. (5) and Eq. (6), which pin down the right-end point and the average
score, that is

λ = 1 + α − β, λ
2
=
α2

2
+ 1 − β2

2
=⇒ α =

λ

2
, β = 1 − λ

2
.

More generally, the total certification probability is the same under L and Lα,β . It
follows that Eq. (6) is equivalent to the fact that their integrals coincide, i.e., the two blue
triangular regions in Figure 2 have equal areas. Eq. (7) is equivalent to requiring that L -
normalized by the total certification probability - second order stochastically dominates
Lα,β , similarly normalized. Finally, we note that Eq. (1) implies that both L and Lα,β
have the same base score, i.e., θ (L) = θ (Lα,β).

Proposition 1 can be seen as a generalization of the classical Blackwell result in which
L(1) = 1 and

∫ 1
0 sdL(s) = E[θ], thus α = β = 1. As in Blackwell [1953] and Gentzkow

and Kamenica [2016], the statement of Proposition 1 is true even if F has atoms and/or
its support is not connected. The complete proof can be found in the appendix.

4 Seller’s optimal pricing

We now solve for the seller’s optimal prices given a feasible reduced test L. It is easy to see
that the buyer with a score s will not take the score-contingent price if p (s) > min{s, p}.
If p (s) > s , this gives him negative payoff and if p (s) > p, he can always choose the price
p associated with the null score. For a fixed base price, the seller optimally sets her score-
contingent price at the highest level at which the buyer is incentivized to trade, provided
she makes a profit on this transaction, that is

p (s) =

min{s, p} if min{s, p} ⩾ c,

c if min{s, p} < c .
(8)

The seller’s profit can be written as a function of the base price and base score as
follows: ∫ 1

0
max{0,min{s, p} − c }dL(s) + (p − c) (1 − L(1)) · 1[0,θ (L)] (p). (9)

The first term in Eq. (9) is the expected profit that the seller makes by the selling the
good for the score-contingent prices as defined above. The second term corresponds to
the profit that she obtains from selling the good to the buyer who received the null signal
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— the probability of this event is 1 − L(1) and the associated posterior mean is θ (L). So
the buyer trades as long as θ (L) ⩾ p, which forms the argument of the indicator function.

While the score contingent price p (s) is given by Eq. (8), which is a function of the
base price p; the base price itself depends on two criteria. First, suppose the probability of
the null signal is zero, i.e., 1 − L(1) = 0. Then, the buyer shouldn’t claim the null signal.
So the base price can be set at some p ⩾ 1 to deter him from making the "off-path" claim.

Consider the case 1 − L(1) > 0. It is easy to see that when the seller offers a tradable
base price (p < 1), it should be equal to the buyer’s reservation value conditional on the
null signal, so p = θ (L). But, does the seller indeed find it profitable to offer a tradable
base price? It depends on the information rents she has to pay for allowing the buyer to
"misreport" having the null signal. Assuming c = 0 for simplicity, the seller’s profits in
the absence and presence of a tradable base price are given respectively by∫ 1

0
sdL(s) and p (1 − L(1)) +

∫ p

0
sdL(s) +

∫ 1

p
pdL(s).

Substituting p = θ (L) and writing the above as an inequality, we get the following:
θ (L) (1 − L(1)) ⩾

∫ 1
θ (L) (s − θ (L))dL(s). So, the seller should offer p = θ (L), when-

ever this inequality holds and offer p ⩾ 1 otherwise. Incorporating positive costs in the
above calculation and assuming ties are broken in favor of the buyer gives us the following
result.

Proposition 2. Fix a reduced test L.

1. If 1 − L(1) > 0 and (θ (L) − c) (1 − L(1)) ⩾
∫ 1
θ (L) (s − θ (L))dL(s), then the seller’s

optimal pricing scheme is given by

p = θ (L) and p (s) = max{min{s, θ (L)}, c } ∀s ∈ [0, 1] .

2. If either 1− L(1) = 0 or (θ (L) − c) (1− L(1)) <
∫ 1
θ (L) (s − θ (L))dL(s), then the seller’s

optimal pricing scheme is given by

p ⩾ 1 and p (s) = max{s, c } ∀s ∈ [0, 1] .

Proposition 2 completely characterizes the seller’s optimal pricing mechanism as a
best response to the buyer’s choice of a reduced test. In the first case, the seller posts the
base price that equals to the base score, that is the posterior mean conditional on the null
signal, and offers discounts for showing a certificate with a score below the base price. In
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the second case, the seller serves only the buyer with a certificate thereby extracting the
whole surplus conditional on some certificate being printed.

The inequality in Proposition 2, for 1 − L(1) > 0, can be re-written

θ (L) −

∫ 1
θ (L) (s − θ (L))dL(s)

1 − L(1)︸                                ︷︷                                ︸
virtual value

⩾ c . (10)

In the language of Myersonian mechanism design,
∫ 1
θ (L) (s − θ (L))dL(s) is essentially the

information rent to be paid to all types s ⩾ θ (L), and total term on the left hand side is
simply the virtual value that captures through the inequality whether it is indeed worth-
while to pay these type the information rent associated with the null signal.

In the case when the virtual value is higher than the cost of production, trade happens
more often because the buyer is served even if he receives the null signal. But such trades
are ex-post inefficient when the buyer’s valuation is below the marginal cost and he has
the null signal. Yet, having a tradable base price is better for the seller as long as the
probability of the null signal, 1 − L(1), and base score, θ (L), are large enough.

5 Buyer’s optimal reduced test

We now have all the ingredients to describe the problem of buyer’s optimal learning under
hard information. For a given reduced test L, the buyer’s expected payoff is zero when the
seller finds it optimal to set p ⩾ 1. This is so because the case corresponds to the second
part of Proposition 2, where p (s) = s whenever there is trade. That the buyer avoids such
reduced tests becomes a constraint, and his problem can be succinctly expressed as

sup
0⩽α<β⩽1, L

∫ 1

θ (L)
(s − θ (L))dL(s) subject to (11)

Eq. (5) - Eq. (7), (θ (L) − c) (1 − L(1)) ⩾
∫ 1

θ (L)
(s − θ (L))dL(s).

The buyer’s objective in Problem (11) integrates over the outcomes of the reduced
test that generate a score higher than the base score. This is because in all other cases the
buyer’s payoff is exactly zero. Owing to Proposition 1, the choice is restricted to reduced
tests with two thresholds α and β which satisfy Eq. (5) - Eq. (7). And lastly the inequality
constraint ensure we are in the first case of Proposition 2 so that the seller finds it optimal
to offer a base price of θ (L). A reduced form test that solves this problem is said to be

15



buyer’s optimal. In what follows we completely characterize the family of such reduced
tests.

5.1 Two threshold optimum

Consider the class of dual threshold reduced tests introduced in Proposition 1. The fol-
lowing result states the existence of a unique buyer-optimal reduced test in this class and
that every buyer’s optimal reduced test is a garbled version of this dual threshold reduced
test.

Theorem 1. There are two unique thresholds 0 ⩽ α⋆ < F (c) ⩽ β⋆ ⩽ 1 such that Lα⋆, β⋆ is a
buyer’s optimal reduced test. Moreover, a reduced test L is buyer’s optimal if and only if it can
be obtained from Lα⋆, β⋆ by garbling scores independently in

[
0, F −1(α⋆)

)
and

[
F −1( β⋆), 1

]
.

Remark 2. Amongst all buyer’s optimal reduced tests, the most (Blackwell) informative re-
duced test is Lα⋆, β⋆; and the least (Blackwell) informative one corresponds to the test under
which the buyer receives sL := E[θ |F (θ) < α⋆] for F (θ) < α⋆, sH := E[θ |F (θ) ⩾ β⋆] for
F (θ) ⩾ β⋆, and the null signal otherwise, see Figure 3.

θ
0 1F −1(α⋆)sL sHF −1( β⋆)

H (·|θ) = 1[ sL,1] (·) H (·|θ) = 0 H (·|θ) = 1[ sH ,1] (·)

Figure 3: Generating the least informative buyer’s optimal reduced test.

Theorem 1 underscores the simplicity of the endogenously generated optimal tests in
the large universe of all possible learning procedures. They are partitional with at most
two thresholds. Two specific reduced tests described in Remark 2 are easy to implement.
Partition the type space into three intervals. Either perfectly reveal the buyer’s valuation
at the bottom and the top or reveal only the interval from which the value is drawn. The
pricing mechanism used by the seller follows immediately from Proposition 2.

It is obvious that the buyer wants a positive measure of types to not produce a certifi-
cate, i.e. 1− L(1) > 0, else the seller extracts the entire surplus. Intuitively, when the cost
of the seller is zero, the buyer pools all these types with no certificate at the bottom, i.e.
α∗ = 0. It ensures the price at which the seller trades with the types with no-certificate,
i.e. the base price given by θ (Lα∗, β∗) = E[θ |θ ⩽ F −1( β∗)], is the smallest possible. This,
in turn, generates the maximal (information) rent for the types that do have a certificate
in the top region, [F −1( β∗), 1] because they too want to trade at the base price. Linearity
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of the model ensures that any garbling of types in the top region continues to be optimal
and the Blackwell least informative one simply prints a unique score in the top region.
Finally, trade is efficient and always takes place at the base price.

If the cost of the seller is positive and α∗ = 0, then at some high enough value of c , the
seller is no longer willing to trade with the buyers in the region [0, F −1( β∗)], the ones
without a certificate. The virtual value constraint described in Eq. (10) is violated and
we fall into part 2 of Proposition 2. So the seller will exclude these buyers by setting a
base price greater than 1, and trade only with those that produce a certificate in the region
[F −1( β∗), 1], extracting the whole surplus using score contingent prices. In order to avoid
this, the buyer produces some information at the bottom by setting α∗ > 0, restores
some efficiency in trade and increases the base price to θ (Lα∗, β∗) = E[θ |F −1(α∗) ⩽ θ ⩽
F −1( β∗)]. Again this bottom interval can be independently garbled and the Blackwell
least informative one simply prints a unique score in the region. Trade takes place in the
intervals [F −1(α∗), F −1( β∗)) and [F −1( β∗), 1] at the base price, and a discount is offered
in the interval [0, F −1(α∗)) if it is profitable for the seller to trade with these types.

The formal proof of Theorem 1 is sketched in the next subsection. Before that we
document the comparative static of the information structure with the respect to the
seller’s cost.

Corollary 1. There exists c, c ∈
(
0,E[θ]

)
such that the value of α⋆ as described in Proposition

1 is 0 for all c ∈
[
0, c

]
, and it is positive for all c ∈

[
c,E[θ]

)
.

5.2 Proof sketch of Theorem 1 and Corollary 1

The buyer’s problem (11) is high-dimensional as it involves the choice of a function L. In
what follows we will show that this infinite-dimensional program can be reduced to the
choice of a single variable from which the optimal dual threshold reduced test claimed in
Theorem 1 can be constructed. Our argument is split in three separate steps. To start
with, note that the buyer’s objective can be re-written as follows:∫ 1

θ (L)
(s − θ (L))dL(s) =

∫ 1

0
sdL(s) − θ (L)L(1) + δ (L), where δ (L) :=

∫ θ (L)

0
L(s)ds .

(12)

Since Lmust be feasible, its total certification probability, average score and base score
are pinned down by the associated dual threshold reduced test Lα,β . Thus, the only free
variable in Problem (11), which is independent of α and β, is δ (L). Our first step is to
reduce the choice δ (L) to a constant δ. Then, we will show that both β and δ can be
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imputed as functions of α, thus further reducing the buyer’s optimization problem to the
choice a single variable.

Step I: Reduce the choice of δ (L) to a single variable δ. Feasibility immediately imposes
restrictions on the choice of δ (L); in fact, it can be bounded from above and below. First,
we note that Eq. (7) implies δ (L) ⩽ δ (Lα,β). As for the lower bound, we consider the
least (Blackwell) informative feasible reduced test, i.e., one that assigns all mass to the (con-
ditional) average score.10 By construction, δ (L) must be larger than the corresponding
value for this reduced test, that is

δ (L) ⩾ max
{
0, θ (Lα,β) (1 + α − β) −

∫ 1

0
sdLα,β (s)

}
. (13)

Now, fix a pair of thresholds 0 ⩽ α < β ⩽ 1, and some δ between the upper and
lower bounds mentioned above. We will construct a feasible reduced test L that attains
this value of δ. For α ∈ [0, α] and β ∈ [ β, 1], define a reduced test Lα,βα,β as follows:

Lα,βα,β (s) :=



F (s) if F (s) < α,

α if F (s) ⩾ α ∧ s < θ (Lα,β),

β + α − β if F (s) < β ∧ s ⩾ θ (Lα,β),

F (s) + α − β if F (s) ⩾ β.

(14)

According to Proposition 1, a reduced test Lα,βα,β is feasible if and only if it has the same

mean as Lα,β .11 The reader can verify that the average score under Lα,βα,β is increasing in α
and decreasing in β. Thus, by varying α and adjusting β accordingly, one can attain any
value of δ between the lower and upper bounds.

10The lowest value of δ (L) amongst all reduced test satisfying Eq. (5) and Eq. (6) is attained at L(s) =
(1 + α − β)1[∫ 1

0 t dL(t )/(1+α− β ),1
] (s).

11Such reduced test can be obtained from the test in which the buyer’s receives a perfectly informative
score for θ ∈

[
0, F −1 (α)

)
∪

[
F −1 ( β), 1

]
, the score of θ (Lα,β) for θ ∈

[
F −1 (α), F −1 (α)

)
∪

[
F −1 ( β), F −1 ( β)

)
and the null signal, otherwise.
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β

Figure 4: Attaining various values of δ.

To see the construction in action, consider the example of the uniform distribution
depicted in black in Figure 4. Given two thresholds α and β, the dual threshold reduced
test Lα,β , which is shown in red, is obtained by cutting out all valuations between these
thresholds in the quantile space. By construction, the base score θ (Lα,β) lies between
F −1(α) and F −1( β). Thus, δ (Lα,β) equals to the area of the trapezoid with the following
vertices: (0, 0), (θ (Lα,β), 0), (θ (Lα,β), α) and (α, α). In order to attain lower values of δ,
we decrease informativeness of Lα,β by pooling together scores nearby θ (Lα,β) in a way
that the average score of these pooled types is exactly θ (Lα,β). Graphically, we construct
Lα,βα,β by lowering Lα,β to the left of θ (Lα,β) to α and raising it to the right of θ (Lα,β) to
β + α − β such that the areas of two blue trapezoids are the same, which ensures that the
new reduced test has the same mean as the original dual threshold reduced test. Then, the
value of δ (Lα,βα,β) is the area of the orange trapezoid.

Building on these observations, the following lemma simplifies Problem (11). It re-
duces the dimensionality of the buyer’s learning decision to just three variables, namely
α, β and δ.

Lemma 1. Fix 0 ⩽ α < β ⩽ 1 and u ∈ R. There exists a reduced test L that satisfies the
constraints of Problem (11) and yields the buyer’s expected payoff of u if and only if there exists
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δ ∈ R such that

u =

∫ 1

0
sdLα,β (s) − θ (Lα,β) (1 + α − β) + δ, (15)

δ (Lα,β) ⩾ δ ⩾ max
{
0, θ (Lα,β) (1 + α − β) −

∫ 1

0
sdLα,β (s)

}
, (16)

θ (Lα,β) −
∫ 1

0
sdLα,β (s) − c ( β − α) ⩾ δ. (17)

Eq. (15) states the buyer’s expected payoff as a function of these three variables. Eq.
(16) ensures that there exists a feasible reduced test that can attain the given value of δ.
Finally, Eq. (17) ensures that the seller wants to trade with the buyer who has the base
score.

To sum up, the problem of buyer’s optimal learning can be split into two parts. First,
find two thresholds α, β and the value of δ that gives the highest possible payoff u to the
buyer. This is a finite-dimensional optimization problem with the objective given by Eq.
(15) and constrained by Eq. (16) and Eq. (17). Once the solution (α⋆, β⋆, δ⋆) is known,
the whole family of buyer’s optimal reduced tests can be reconstructed from it: Eq. (15)
- (17) ensure that any reduced test L that is feasible for (α⋆, β⋆) and has the same value of
δ (L) = δ⋆ is buyer’s optimal.

Step II: Reduce δ further to be a function of α and β. We now show that it is optimal for
the buyer to choose δ at its maximal feasible level, i.e., δ = δ (Lα,β). At the conceptual
level, this means that the family of dual threshold reduced tests is sufficient to solve for
the buyer’s highest payoff.

The mechanics of this result is as follows. Take a tuple (α, β, δ, u) satisfying the condi-
tions of Lemma 1 and assume that δ is below its upper bound. As discussed in the previous
step, the payoff u can be attained by some feasible test Lα,βα,β with α < α ⩽ β < β, where
two additional thresholds α and β are chosen to match the given value of δ. Using the
parametric form of Lα,βα,β , the reader can verify that the buyer’s payoff u under this reduced
test can be re-written as

u =

∫ 1

F −1 ( β)
(θ − θ (Lα,β))dF (θ). (18)

In the appendix we show that we can increase both α, β by a small ε > 0, push α and
β closer to α and β so that Eq. (16) and Eq. (17) still hold. Although, the perturbation
marginally decreases each "existing" type’s information rent as θ (Lα,β) goes up, it allows
many more types to have rents, because of lower β. The second effect is always dominant
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and thus the expected payoff, as defined in Eq. (18), goes up.
To sum up, the perturbation of Lα,βα,β , which corresponds to the tuple (α, β, δ, u), yields

a new tuple (α′, β′, δ′, u′) that still satisfies constraints of the buyer’s optimization prob-
lem, and the expected payoff u′ is strictly higher than u. Since we can keep raising the
buyer’s expected payoff by further perturbing Lα,βα,β as long as the value of δ is below its
maximal upper bound, the claim follows.

Lemma 2. Let (α, β, δ, u) ∈ R4 satisfy Eq. (15) - Eq. (17) with 0 ⩽ α < β ⩽ 1 and δ <
δ (Lα,β). Then, there exists (α′, β′, δ′, u′) satisfying the same constraints but δ′ = δ (Lα′, β′),
and u′ > u.

Step III: Rewrite β as a function of αUsing Steps I and II, we can finally reduce the prob-
lem of the buyer’s optimal learning to just two thresholds and one inequality constraint
that guarantees that the seller is willing to trade with the buyer who has the base score.
It is convenient to work with the inverse of the prior distribution R := F −1. Then, using
Lemma 1 and the fact that δ = δ (Lα,β) (Lemma 2), Problem (11) can now be written as

sup
0⩽α<β⩽1

∫ 1

β
(R(s) − θ (Lα,β))ds subject to (θ (Lα,β) − c) (1 − α) ⩾

∫ 1

β
(R(s) − c)ds,

(19)

where θ (Lα,β) =
∫ β
α

R(s)ds
β−α , which follows directly from Eq. (1).

We now argue that the constraint in Problem (19) must hold as an equality, and there
is a unique value of β for which it is true. To see the first point, note that the objective
is decreasing in β. Since the inequality constraint is necessarily violated as β ↘ α, any
solution to Problem (19) satisfies the constraint as an equality— the seller’s is made exactly
indifferent between trading with the buyer who has the base score and ignoring this buyer.

As for the second point, the constraint requires θ (Lα,β) ⩾ c , thus R( β) ⩾ c (resp.
β ⩾ F (c) ). Since for each α ∈ [0, 1), the left-hand side is increasing and the right-hand
side is decreasing in β for β ∈ [F (c), 1], there exists a unique number β (α) ∈ (α, 1) such
that the constraint indeed holds as an equality, that is

(θ (Lα,β (α)) − c) (1 − α) =
∫ 1

β (α)
(R(s) − c)ds . (20)

This discussion is summarized in the following lemma.

Lemma 3. For each α ∈ [0, 1), there exists a unique number β (α) ∈ [F (c), 1] satisfying Eq.
(20). Moreover, if (α, β) solves Problem (19), then β = β (α).
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Thus, Lemmas (1) - (3) show that the buyer’s maximal expected payoff can be found
by solving a “simple” maximization program — Problem (19) in which the inequality
constraint binds. LetV (α) denote the objective in this problem as a function of α holding
β = β (α), that is

V (α) :=
∫ β (α)

α
(R(s) − c)ds . (21)

So, the buyer’s problem finally reduces to the choice of α to maximizeV (α). The rest of
the proof precisely characterizes the optimal value of α and backward inducts the family
of buyer’s optimal reduced tests. Specifically, we establish that V (α) is single-peaked, or
more precisely that the derivative ofV (α) crosses zero at most once and from above. This
gives us the necessary and sufficient condition for the optimal threshold in terms of the
primitives, see Eq. (25) in the appendix. In the proof of Corollary 1, we show that this
condition is necessarily satisfied at α⋆ = 0 (α⋆ > 0) for small (resp. large) c .

5.3 Example

We now look at a specific numerical example to see the workings of Theorem 1.

Example 1. Suppose that the buyer’s value is uniform on the unit interval, that is F (θ) =

R(θ) = θ . By Eq. (20), given α ∈ [0, 1), the value of β (α) ∈ (α, 1] is a root of the following
quadratic equation: β2 + β (1 − α − 2c) + (α(1 − α + 2c) − 1) = 0. Only the largest root lies
in (α, 1], thus

β (α) = 1
2

(
α + 2c − 1 +

√︁
5α2 − 4αc − 6α + 4c2 − 4c + 5

)
.

The objective in Problem (19) evaluated at β = β (α) is given by Equation (21):

V (α) = 1
2
( β (α) − α) ( β (α) + α − 2c) .

As can be see from Figure 5, V is not concave but it is single-peaked. For c = 0, the peak is
at α⋆ = 0; however, for large c the peak is positive. Since V is single-peaked, the positivity of
α⋆ is completely determined by the sign of the derivative of V at α = 0, that is

V ′(0) =
(
R( β (0)) − c

)
β′(0) + c .

The reader can verify that both R( β (0)) − c and β′(0) are increasing in c ; and, V ′(0) equals
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Figure 5: β (·) and V as a function of α.

zero for c = 0.1585. It follows that for c below this value, α⋆ = 0 and the single threshold test is
optimal. Otherwise, α⋆ > 0, and we need two regions, in addition to the no-certificate region.
In fact, the optimal value of α⋆ as well as β (α⋆) are non-decreasing in the seller’s marginal
cost as shown in Figure 6.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

c

α⋆

β (α⋆)

Figure 6: Thresholds in the buyer’s optimal dual threshold reduced test as a function of
c .

Finally, to give a fuller picture for the simplest case, note that when seller’s marginal cost is
zero, i.e. c = 0, then α⋆ = 0, and β (0) =

√
5−1
2 ≈ 0.62. So the buyer receives a certificate in

the region [ β, 1] with ’high’ printed on it and receives no certificate in the low region [0, β).
The seller in turn picks a price mechanism that binds the participation constraint of the low
region and the incentive constraint of the high region. This culminates in a posted price of
p = E [θ |θ ∈ [0, β)] = 0.31. It extracts all the surplus from the low region buyers and keeps
the high region buyers indifferent between showing or not showing the certificate. Trade always
takes place, and hence is efficient. The profit of the seller is fixed at 0.31 and the expected profit
of the buyer is E[θ] − p = 0.19.
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6 Discussion

In this section we explore the implications of the hardness of information and seller’s
commitment power for the design of the optimal information structure. We show that it
is the combination of these two which makes the production of information simpler than
in the classical soft information design benchmark. Intuitively, hard information allows
the seller to tag prices to a verifiable object (score), which cannot be falsified, thereby dras-
tically shrinking the set of (buyer’s) incentive constraints; and, her commitment power
is necessary for such contingent prices to be credible from the buyer’s point of view.

6.1 Role of hard information

To understand the role of hard information in the choice of optimal test, we now consider
the opposite case in which information is completely soft— the buyer can fake a certificate
with any score at no costs. To make things simple, we assume that the marginal cost of
production is zero, i.e., c = 0.

Given that the buyer can always claim to have any score, the seller cannot gain by
offering score-contingent prices strictly below her base price. So, it is without loss of
generality to assume that p (s) = p for all s ∈ [0, 1], where the base price is chosen to max-
imize the seller’s profit for the given distribution of posterior means, which is specified by
a reduced test. Furthermore, since the seller’s incentives depend only on the distribution
of posterior means, it is without loss to consider reduced tests in which the null signal is
drawn with probability zero.12 The problem can be stated as follows:

sup
0⩽p⩽1, L

∫ 1

p
(s − p)dL(s) subject to

Eq. (5) - Eq. (7) for α = β = 1, p (1 − L(p−)) ⩾ p′(1 − L(p′−)) ∀p′ ∈ [0, 1] .

The solution to this is well-known, and we document it mainly for completeness.

Proposition 3 (Roesler and Szentes [2017]). Suppose that c = 0 and information is soft.
Then, there exist two numbers π and B such that the following reduced test L is buyer’s optimal:

L(s) :=

max

{
0, 1 − πs

}
if s < B,

1 if s ⩾ B .

12Formally, let L be a feasible reduced test with 1 − L(1) > 0. Define a reduced test L′ as L′ (s) :=
L(s) + (1− L(1))1[θ (L),1] (s). Then, L′ is feasible, and the seller’s profit as a function of the base price is the
same under L′ and under L.
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The seller best responds to this test by offering the base price of π at which trade always takes
place. Furthermore, any reduced test with the same distribution of posterior means as L is also
buyer’s optimal.

As can be seen from the contrast in Theorem 1 and Proposition 3, the buyer’s opti-
mal test takes a markedly different forms under hard and soft information. To fix ideas,
recollect that in the fixed information benchmark studied in the classical screening prob-
lem, the seller would choose p to maximize p (1− F (p)), which is achieved at, say, pclassic.
Then, no trade takes place for θ < pclassic and all buyer types θ ⩾ pclassic trade at the posted
price. In contrast, in both soft and hard information design models, trade always occurs,
creating a total surplus of E[θ]. In both cases, it is optimal for the buyer to achieve the
efficient surplus at the cheapest possible price. But the optimal information structure and
the induced trading rule are different.

In the soft information benchmark, as in the fixed information case, the underlying
mechanism design problem has a continuum of incentive constraints, since the buyer can
misreport any signal. This leads to a posted price mechanism being the best a seller can do
to provide the right incentives. So, the buyer’s learning technology aims to generate the
lowest possible posted price, while ensuring efficient trade. In fact the buyer can ensure
this price is strictly less than pclassic.

Proposition 3 essentially states that this information structure must guarantee that
the seller is indifferent between any two prices in [π, B], i.e., p (1 − L(p−)) = π for all
p ∈ [π, B]. The buyer chooses the smallest π and B so that the truncated-Pareto reduced
test L can be obtained from the prior. The buyer’s posterior lies in [π, B] and he never
learns his valuation precisely.

In the hard information design problem we study, the buyer who has a certificate
can deviate in only one way - by hiding it. This changes the seller’s problem in two
fundamental ways. First, she can tag prices to verifiable scores when the certificate is
presented, and second she has to pay the shadow price of a dramatically lower number of
underlying incentive constraints for the buyer. In fact buyer types whose value is below
the base price are offered a discount and incentivized to trade. Thus, due to the shrunken
set of deviations available to the buyer and the increased set of instruments available to
the seller, the buyer responds by choosing a very simple information structure.

It must be noted that while both soft and hard information design problems lead to
an implementation with a unique posted price (when c = 0), the economic forces driving
this result in the two cases are quite different. In soft information design, the best the
seller can do is to post a single price. In the hard information design problem, the seller
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has a richer set of instruments, in that prices can be tagged to the scores shown on the
certificate. But, in response to this richness the buyer chooses an information structure
in which a posted price, in fact, achieves the optimum.

As the reader can perhaps guess, the buyer (resp. seller) always prefers to learn through
soft (resp. hard) information. To see it, consider the one threshold test discussed above;
the implied reduced test is as follows:

L(s) =

1 − β (0) if s ⩾

∫ 1
0 sd

(
L0, β (0) (s)
1−β (0)

)
,

0 if s <
∫ 1
0 sd

(
L0, β (0) (s)
1−β (0)

)
.

By Theorem 1, L is buyer’s optimal reduced test under hard information. The reader
can verify that, given this reduced test, the seller prefers to offer the base of price of θ (L)
even if information is soft. It follows that the buyer’s highest expected payoff under hard
information is lower than under soft information. Since the trade is efficient under both
hard and soft information whenever c = 0 (see Theorem 1 and Proposition 3) the sum of
buyer’s expected payoff and seller’s expected profit equals to E[θ]. Thus, we can conclude
that the seller prefers the buyer to learn through hard information.

Corollary 2. Suppose that c = 0. The buyer’s expected payoff is smaller and the seller’s profit
is larger under hard information than under soft information.

To understand the workings of this result consider the setting of Example 1 where
prior is uniform, F (θ) = θ, and marginal cost of the seller is zero, c = 0. We know
from the fixed information benchmark that the seller maximizes p (1− p), picking a price
of 1

2 . This generates an expected profit of 0.25 for her and an expected rent of 0.125 for
the buyer. In the soft information design benchmark considered here, the buyer chooses
a truncated Pareto distribution (of posterior means) of the kind stated in Proposition 3
with π ≈ 0.2 and B ≈ 0.87. Given this distribution, the seller posts a price of p = π ≈ 0.2,
and trade always takes place. So the seller’s profit is fixed at 0.2 and buyer’s expected
rent is 0.3. As shown in Section 5.3, in the hard information model we study, the buyer
partitions the type space into two regions at the threshold β = 0.62. So the seller posts a
price of p = 0.31, which generates a profit of 0.31 and an expected payoff of 0.19 for the
buyer.

6.2 Role of commitment

We now take a different perspective to the problem of the buyer’s optimal learning, and
explore the role of seller’s commitment. Consider the extreme case in which the seller
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cannot commit to prices. Instead the players play the following disclosure game: 1) the
buyer decides to show his certificate (if he has one) or not, 2) the seller posts a price for the
good, 3) the buyer decides to take the trade or not. To keep things simple, the marginal
cost is taken to be zero.

As usual, we solve the game backwards for the given reduced test L. If the buyer
shows her certificate with a score s ∈ [0, 1], then, since information is hard, the seller is
certain that the buyer’s posterior mean is s . It follows that the seller offers the highest
score-contingent price that the buyer can accept, that is p (s) = s . As for the base price p -
offered when no certificate is shown - since there is no cost, it is always profitable for the
seller to trade with the buyer with the null signal. So, p is chosen to maximize the seller’s
expected profit given the distribution of posterior means conditional on no disclosure.

Further, since disclosing a certificate yields zero surplus to the buyer, a buyer with
a score strictly above the base price will never reveal it. Moreover, concealing scores
below the base price “jams” the seller’s ability to infer information on lower valuations,
giving the incentive to lower the base price. We conclude therefore that there is no loss
of generality in assuming that the buyer never shows his certificate. Specifically, for any
equilibrium of the disclosure game with base price p, there exists another equilibrium in
which the buyer never shows his certificate, and the seller’s optimal base price is weakly
lower than p.

Given that there is no disclosure, the problem becomes identical to the soft informa-
tion design counterpart, since the best the seller can do at the outset is to use a posted
price mechanism. We document this observation in the following corollary. The for-
mal description of the disclosure game and the proof of the result are presented in the
appendix.

Corollary 3. Suppose that c = 0 and the seller cannot commit. Then, the set of buyer’s optimal
reduced tests is exactly the same as in Proposition 3.

7 Pareto frontier

In this sectionwe characterize the Pareto frontier with learning through hard information.
Recall that for the given the reduced test L, the seller best-responds by either extracting
the whole surplus conditional on s ≠ ∅ or offers the base price that equals the posterior
mean conditional on the null signal. Using Proposition 2, the buyer’s expected payoff,
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sayU (L), can be expressed as follows:

U (L) :=

∫ 1
0 sdL(s) − θ (L)L(1) + δ (L) if 1 − L(1) > 0, θ (L) −

∫ 1
0 sdL(s) − δ (L) ⩾ c (1 − L(1)),

0 otherwise,

where θ (L) is the posterior mean conditional on the null signal (Eq. (1)) and δ (L) is
given by Eq. (12). Combining the expression for the seller’s profit function (Eq. (9)) and
Proposition 2, the seller’s expected profit, say Π(L), can be succinctly written as

Π(L) := E[θ] − c −U (L) +
∫ c

0
L(s)ds .

Our goal is to characterize the set of buyer’s payoff-seller’s profit pairs on Pareto fron-
tier and the set of reduced tests which implement such pairs. Wewill call such tests efficient.
Formally, a feasible reduced test L is said to be efficient if there is no feasible reduced test
L′ such that both players prefer L′ to L, and at least one of them strictly prefers L′, that is(

U (L′),Π(L′)
)
≩

(
U (L),Π(L)

)
.

Note that both the buyer’s expected payoff and the seller’s expected profit depend on
L through (i) its certification probability, (ii) the average score, (iii) δ (L) =

∫ θ (L)
0 L(s)ds ,

and (iv)
∫ c
0 L(s)ds . According to Proposition 1, feasibility pins down (i) and (ii) as a

function of certain thresholds 1 ⩽ α ⩽ β ⩽ 1 associated with the dual threshold re-
duced test Lα,β . In addition, (iii) and (iv) must be lower than their analogues in the dual
threshold reduced test Lα,β , i.e., δ (Lα,β) and

∫ c
0 Lα,β (s)ds . Thus, starting from the high

dimensional family of all feasible tests, we show that, in fact, a much smaller the family
of dual threshold tests is sufficient to trace the Pareto frontier. In particular, in these tests,
the seller is indifferent between trading and not trading with the buyer who has the null
signal.

Proposition 4.

1. A feasible reduced test L with U (L) = 0 is efficient if and only if Π(L) = Π(F ).

2. A feasible reduced test L withU (L) > 0 is efficient if and only if there exists α ∈ [α⋆, 1],
where α⋆ is as defined in Proposition 1, such that U (L) = U (Lα,β (α)) and Π(L) =

Π(Lα,β (α)).

Proposition 4 completely characterizes the payoff-profit pairs achievable through ef-
ficient tests. It also provides a simple and constructive way to trace the whole frontier
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through dual thresholds reduced tests, as follows. Startingwith the buyer’s optimal thresh-
old α⋆, increase this threshold and adjust the second threshold β according to Eq. (20) so
that the seller is still indifferent between trading with the buyer who has no certificate and
ignoring this buyer. The contents of the result are best illustrated through an example.
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Figure 7: Pareto frontier (left panel) and (α, β (α)) (right panel) as functions of the buyer’s ex-
pected payoff on the frontier for uniformly distributed valuation, F (θ) = θ and marginal cost
c = 0.2.

Example 2. Assume that the prior is uniformly distributed, F (θ) = θ , and in addition
marginal cost is c = 0.2. Then the total efficient surplus is given by E

[
(θ − c)1[c,1] (θ)

]
=

0.32. Figure 7 plots the Pareto frontier, and the corresponding dual thresholds that implement
each point on it.

The right most point on the Pareto frontier corresponds to the buyer’s optimal information
structure and the left most point corresponds to the seller’s optimal information structure. One
can immediately note that when the seller has all the bargaining power on what test to choose,
she chooses α = β = 1, that is full information revelation, and thereby attains the entire
efficient surplus as profit. As we gradually move down the Pareto frontier, we get 0 < α <
β < 1, so the buyer is given information rent for obtaining the null signal in the region
θ ∈

[
F −1(α), F −1( β)

)
, which in the uniform case is simply θ ∈ [α, β).

The Pareto frontier is at first linear and continues to achieve the efficient surplus, that is,
U + Π = 0.32. For a large enough value of the buyer’s payoff, however, the Pareto frontier is
concave and does not achieve the efficient surplus. Comparing the two graphs in Figure 7, it
can be noted that the curvature flips exactly at α = 0.2. Since α < c in the right most part
of the Pareto frontier, it is clear that we may have trade even for types α ⩽ θ < c , which is
inefficient.

To grasp the reasoning better, consider the two points on the Pareto frontier in Figure 7,
marked by the red dot “A” on the curved region and blue dot “B” on the flat part. The coarsest

29



information structures that achieve these points on the Pareto frontier are depicted in Figure
8. The one on the right corresponds to the blue dot, where α > c . As before, the buyer does
not receive a certificate in the region [α, β); receives a certificate in the region [ β, 1] with sH
printed on it; and - in a departure from previously discussed cases - the region [0, α) is split into
two regions [0, c) and [c, α), where sL is printed on the certificate in the region [0, c) and sL is
printed on the certificate in the region [c, α). This allows for efficient trade, since both parties
know (on path) when the value lies in interval [0, c) and no trade takes place then. A discount
is offered in the region [c, α), and a posted price equal to β+α2 incentivizes trade in the regions
[α, β) and [ β, 1].

θ
0 1cα βsL sH

1[ sL,1] (·) H (·|θ) = 0 1[ sH ,1] (·)

θ
0 1c α βsL sL sH

1[ sL,1] (·) 1[ sL,1] (·) H (·|θ) = 01[ sH ,1] (·)

Figure 8: Least informative buyer’s optimal reduced tests corresponding to points "A"
(left panel) and "B" (right panel) in Figure 7, where F (θ) = θ and marginal cost c = 0.2.

The information structure on the left in Figure 8 corresponds to the red point on the Pareto
frontier in Figure 7. Here α < c . Trade again takes place at the posted price β+α2 in the regions
[α, β) and [ β, 1] . However, in the bottom region, [0, α), there is no trade. As the figure
shows, the region [α, c) now features trade, even though it is inefficient. What should be size of
this inefficient region? The answer to this, in calculating the optimal α and β gives curvature
to the Pareto frontier.

The curvature in the Pareto frontier in Figure 7 represents a trade-off that can be
formalized more generally. Recollect that in Example 1 we had c = 0. The Pareto frontier
in that case is a straight line withU +Π = 0.5, the efficient value, at all points. Following
Example 2, more generally, we note that full efficiency typically cannot be attained with
c > 0 whenever the buyer’s expected payoff is large enough. The reason is the learning-
information rent trade-off discussed in Section 5.1. In order to provide a large expected
payoff to the buyer, we need to decrease the quality of learning for small valuations, which
might lead to ex-post inefficiencies. To see it more formally, write down the total surplus
as a function of α, i.e.,

Π(Lα,β (α)) +U (Lα,β (α)) = E[max{0, θ − c }]︸                ︷︷                ︸
maximal surplus, Π(F )

−
∫ c

0
(F (s) − Lα,β (α) (s))ds︸                            ︷︷                            ︸

loss from imperfect learning

.
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The first term is the maximal efficient surplus under perfect information. The second
term captures the loss from imperfect learning. It is positive if and only if α < F (c),
which, in the uniform case, is simply α < c . If learning is imperfect then the Pareto
frontier is non-linear, as seen in Figure 7.

8 A general result

We now extend our characterization of efficient tests to a more general setting. First, we
allow the distribution of the buyer’s valuation F to be supported on any subset of the unit
interval (finite or continuum or some mixture) that includes {0, 1}. Second, generating
hard evidence is potentially costly for the buyer. We assume there exists some function
ι : [0, 1] → R+ with ι(0) = 0, which maps evidence probabilities to costs for the buyer.
Specifically, a test H costs ι

(
1 −

∫ 1
0 H (1|θ)dF (θ)

)
. Third, the seller can supply any non-

negative quantity q up to q ⩾ 0 at a cost of C (q) ⩾ 0, which is assumed to be continuous
and convex with C (0) = 0.13

This third feature allows us to extend the model to non-linear pricing á la Mussa and
Rosen [1978]. Specifically, the seller commits to score-contingent quantity-price pairs
(q,p) :=

(
q (s), p (s)

)
s∈[0,1] and a base quantity-price pair (q, p).14 Given the seller’s offer,

the buyer with a score s ∈ [0, 1] can take (q (s), p (s)), (q, p) or walk away, and the buyer
with the null signal can either take (q, p) or refuse to trade.

The notion of a reduced test is the same as before; furthermore, Proposition 1 still pins
down the set of feasible reduced tests in this more general environment. Given the reduced
test L, the seller selects her score-contingent quantity-price pairs and the base quantity-
price pair. To formalize the solution to the seller’s problem, we need two auxiliary objects:
for each s ∈ [0, 1], letQ (s) be the surplus-maximizing quantity andW (s) be the associated
maximal surplus, that is

Q (s) := max arg max
q∈[0,q]

sq −C (q), W (s) := sQ (s) −C (Q (s)).

Proposition 5. Fix a reduced test L.

1. If 1 − L(1) > 0, then the seller’s optimal quantity-price pairs are given by

p = θ (L)q, q = Q (ν (L)) and p (s) = sq (s)−max{0, s−θ (L)}q, q (s) = Q (s) ∀s ∈ [0, 1],
13Continuity and convexity can be substantially relaxed to only requiring that the cost function is lower-

semi continuous. Then, slightly abusing notations, we identify C with its convex envelope.
14As shown in the appendix, this space of mechanisms is without loss of generality.
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where ν (L) is the virtual value associated with the null signal, that is

ν (L) := θ (L) −

∫ 1
θ (L) (s − θ (L))dL(s)

1 − L(1) . (22)

2. If 1 − L(1) = 0, then the seller’s optimal quantity-price pairs are given by

p ⩾ q and p (s) = sq (s), q (s) = Q (s) ∀s ∈ [0, 1] .

The result can be absorbed as follows. Analogous to the linear case, the information
rent given to types s ⩾ θ (L) who can misreport s = ∅ is captured by

∫ 1
θ (L) (s − θ (L))dL(s),

which in turn constitutes the virtual value for the buyer normalized by the weight of null
types, 1 − L(1). The allocation for the null signal is then simply the surplus maximizing
quantity at the virtual value, viz. q = Q (ν (L)), and since the seller will optimally choose
to make the IR constraint of the buyer bind, p = θ (L)q .

The buyer who produces the certificate is allocated the pointwise surplus maximizing
quantity, q (s) = Q (s). As long as the score is below θ (L), the seller can make the buyer’s
IR constraint bind, charging p (s) = sq (s). For types s ⩾ θ (L), because of the intensive
margin of allocation, the information rent must reflect a sliding discount in prices, which
is captured by max{0, s − θ (L)}q . Finally, if the probability of the null certificate is zero,
L(1) = 1, the seller produces the efficient surplus and extracts all of it.

Analogous to Section 7, we now characterize the Pareto frontier. For the reduced test
L and the seller’s optimal response to it described in Proposition 5, denote the buyer’s
expected payoff net his learning cost by U (L) and the seller’s expected profit by Π(L),
resp. Using Proposition 5, these can be expressed as follows:

U (L) :=

Q (ν (L))

(∫ 1
0 sdL(s) − θ (L)L(1) + δ (L)

)
− ι(1 − L(1)) if 1 − L(1) > 0,

0 otherwise;

Π(L) :=

∫ 1
0 W (s)dL(s) + (1 − L(1))W (ν (L)) if 1 − L(1) > 0,∫ 1
0 W (s)dL(s) otherwise,

where θ (L) is the posterior mean conditional on the null signal (Eq. (1)), δ (L) is given
by Eq. (12) and ν (L) is the virtual value defined by Eq. (22). A feasible reduced test L
is buyer’s optimal if there no feasible reduced test L′ that the buyer’s strictly prefers to L,
that is U (L′) > U (L). The notion of efficiency is the same as before: a feasible reduced
test L is efficient if there is no feasible reduced test L′ such that both players prefer L′ to
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L, and at least one of them strictly prefers L′, that is
(
U (L′),Π(L′)

)
≩

(
U (L),Π(L)

)
.

Theorem 2.

1. Let L be efficient with 1 − L(1) = 0. Then, the completely informative reduced test F is
efficient, and U (L) = U (F ), Π(L) = Π(F ).

2. Let L be buyer’s optimal with 1 − L(1) > 0. Then, there exists two thresholds 0 ⩽ α <
β ⩽ 1 such that the dual threshold reduced test Lα,β is buyer’s optimal, and U (L) =

U (Lα,β).

3. Let L be efficient with U (L) > 0. Then, there exists four thresholds 0 ⩽ α ⩽ α < β ⩽
β ⩽ 1 such that the reduced test Lα,βα,β described in Eq. (14) is efficient, and U (L) =

U (Lα,βα,β), Π(L) = Π(Lα,βα,β).

Theorem 2 says that under very mild assumptions on the players’ payoffs, any effi-
cient test can be replicated by a reduced test in a certain parametric family Lα,βα,β , which
is specified in Eq. (14) and is a function of four thresholds. For any continuous cdf F ,
the efficient test can be obtained as follows: the buyer receives a perfectly informative
score for θ ∈

[
0, F −1(α)

)
∪

[
F −1( β), 1

]
, the score of θ (Lα,β) for θ ∈

[
F −1(α), F −1(α)

)
∪[

F −1( β), F −1( β)
)
and the null signal in the middle region

[
F −1(α), F −1( β)

)
; represented

in Figure 9.

θ
0 1F −1(α) F −1( β)F −1(α) F −1( β)

1[θ,1] (·) 1[θ (Lα,β ),1] (·) H (·|θ) = 0 1[θ (Lα,β ),1] (·) 1[θ,1] (·)

Figure 9: Generating the reduced test Lα,βα,β .

In other words, the bottom and top intervals have certification with the buyer’s exact
value printed on it, and the middle region does not get a certificate (i.e., the test is deemed
inconclusive). The two new intermediate regions, to left and right of the middle region,
get a certificate with a score θ (Lα,β) printed on them. To fix ideas, if F is uniform, we
have β+α2 =

β+α
2 . So the four thresholds preserve the average score with full information

revelation, and split the middle region into three regions, two of which do produce a
certificate but with no new information at the intensive margin. If the buyer receives a
certificate with θ (Lα,β) printed on it, he knows that his values lies in [α, α) ∪ [ β, β).

Note in Theorem 2 that the buyer-optimal test still has at most two thresholds. So, it
is when the seller has some bargaining power on the choice of the test, she can use this
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extra instrument of creating two new thresholds to potentially increase the profit. With
linear preferences, splitting the middle region into three regions does not help the seller
because in equilibrium the prices that are accepted by the buyer do not change in response
to this richer information structure, and hence the (bang-bang) allocation too remains the
same. Thus, the total surplus and the buyer’s payoff also are the same. However, with
convex production costs, this extra instrument can potentially allow the seller to increase
total surplus and her share in the split. In terms of the allocation rule in Proposition 5,
q (s) ⩾ Q (ν (L)) for s corresponding to the two new regions. Whenever this inequality is
strict, the seller will find it optimal to have the extra thresholds.

Our result applies to situations in which the learning cost function is not monotone or
even continuous, andC is just lower-semi continuous (see Footnote 13). If more structure
is imposed, then the space of dual threshold reduced tests can be sufficient to trace the
entire Pareto frontier, as happens in the uniform-quadratic setting.

Example 3. Suppose that the buyer’s value is uniform on the unit interval, certification is
costless and the production cost is quadratic. That is, F (θ) = R(θ) = θ , ι ≡ 0, and C (q) = q2

2

with q ⩾ 1. The solution to this example is depicted in Figure 10.
First note that the Pareto frontier, left panel in Figure 10, is strictly concave. The extra

curvature, driven by the intensive margin of allocation (as opposed to the bang-bang nature
in the linear model), implies that efficiency can in general not be attained, and the distortion
away from efficiency, captured by Eq. (22), changes continuously in the bargaining power
of the choice of test. At the bottom end of the Pareto frontier, when the buyer has most of
the bargaining power, the curvature is extra sharp for reasons similar to the linear model—the
trade-off between learning and information rents is non-trivial and leads to imperfect learning.

The optimal information structures that achieve the points on the Pareto frontier are cap-
tured by the right panel of Figure 10. For the linear-quadratic model, at most two thresholds are
sufficient to trace entire frontier. The figure plots the two thresholds, α and β as we move down
the Pareto frontier. In comparison to the linear model, the measure for the null signal or no
certificate, i.e., β − α, is smaller (compare right panel in Figure 7). Thus, more information is
produced with convex costs then with linear. Since the information is hard, its hurts the buyer
and hence his share of the total surplus too is lower in the concave model than in the linear one.

9 Final remarks

Production of information in the marketplace is invariably some combination of "soft"
and "hard". While we use the terms in a specific theoretical sense, their colloquial un-
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Figure 10: Pareto frontier (left panel) and (α, β (α)) (right panel) as functions of the buyer’s
expected payoff on the frontier for uniformly distributed valuation, F (θ) = θ, and quadratic cost,
C (q) = q2

2 .

derstanding has been steadily evolving. For example, Liberti and Petersen [2018] meticu-
lously document the kinds of information in use in the finance industry, and classify them
as soft or hard. They note the traditional role of soft information in finance, and then
define hard information in contrast as satisfying certain criteria. The rise in information
technology, they contend, has enabled the processing of hard information, and hence its
greater use.

While the theoretical literature in economics has responded with gusto to the rise of
information technology through the study of soft information design, hard information
design is arguably lagging behind its softer cousin. Our aim in this paper has been to
take inspiration from (i) the rise in the use of hard information in various markets, (ii)
plethora of classical studies in (exogenous) hard information and evidence, (iii) the exten-
sive development of information design tools; and use these to study the impact of hard
information design in the context of the canonical monopolistic screening problem.

We find that despite the large universe of available tests, those that map the Pareto
frontier take a simple partitional form, often with at most two thresholds. This points
towards a foundation for the coarseness of certifications prevalent in real market transac-
tions. The simplicity is generated by the interaction of hardness of information and the
seller’s ability to commit to a pricing mechanism. Relaxing either takes the model back
to the soft information design benchmark, where a more detailed distribution of signals
is required at the optimum.

We start with the buyer optimal information structure and then map the Pareto fron-
tier by varying the bargaining power on the choice of test, while keeping fixed the party
who offers the contracts, i.e. the seller. It is also plausible to ask how the optimal in-
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formation structure and corresponding pricing mechanism change as we vary both the
bargaining power of who gets to choose the test and who gets to offer contracts. This is
an interesting question for future work.15

Finally, as Laffont and Martimort [2009] note, the screening model can be adapted to
study a wide array of economic interactions—price discrimination, regulation, insurance
and financial markets. It would be interesting to extend the ideas developed here to these
contexts. It would also be interesting to write down models where both soft and hard
information co-exist and have to be designed as part of the larger transaction. In addition,
as briefly mentioned in Section 2.2, but not fully pursued, thinking about privacy by
varying the method of disclosure, i.e. what mixture of hard and soft information, seems
useful. We leave the development of these ideas for future work.

10 Appendix

The proofs from Sections 5, 6.1, and 7 are provided here. In theOnline Appendix, we pro-
vide the missing proofs for results on the general model described in Section 8, and also a
revelation principle for the space of mechanisms the seller can employ and a formalization
of the disclosure game presented in Section 6.2.

Proof of Lemma 2. First of all, we note that β < 1, because the upper and lower bounds
in Eq. (16) coincide whenever β = 1, that is

δ (Lα,1) = θ (Lα,1)α −
∫ 1

0
sdLα,1 ∀α ∈ [0, 1).

The argument is constructive, for each ε ∈ [0, 1 − β], define αε := α + ε, βε := β + ε
and δε as

δε := δ +
(
θ (Lαε, βε ) −

∫ 1

0
sdLαε, βε (s)

)
−

(
θ (Lα,β) −

∫ 1

0
sdLα,β (s)

)
.

Let uε be such that Eq. (15) holds for (uε, αε, βε, δε).
By construction, 1−Lαε, βε (1) = β−α = 1−Lα,β and Eq. (17) holds for all ε ∈ [0, 1−β];

moreover,
∫ 1
0 sdLαε, βε (s) is decreasing in ε. It follows from Eq. (1) that θ (Lαε, βε ) is

15For standard fixed information screeningmodels to have bite, typically one party is given the bargaining
power to offer contracts (seller) and the other access to some private information (buyer).
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increasing in ε. As a result, uε is increasing in ε, and for each ε ∈ [0, 1 − β],

δε ⩾ max
{
0, θ (Lαε, βε ) (1 + α − β) −

∫ 1

0
sdLαε, βε (s)

}
.

By assumption, δ (Lα,β) > δ; therefore, starting from ε = 0 and increasing this num-
ber, we must necessarily reach the point at which δε = δ (Lαε, βε ). This is guaranteed to
happen for some ε ∈ [0, 1 − β], because, as shown above, the upper and lower bounds in
Eq. (16) coincide whenever β = 1. □

Proof of Theorem 1. Part 1. We shall show that there exists a unique number 0 ⩽ α⋆ <
F (c) which maximizes V (α) defined by Eq. (21). It will follow then from Eq. (20)
that Lα⋆, β⋆ for β⋆ := β (α⋆) is the unique buyer’s optimal dual threshold reduced test. To
establish the claim, we will show that the derivative ofV (α) crosses zero at most once and
from above. Although the single-peakedness of V (α) is not necessary to prove Theorem
1, it will allows us to precisely pin down α⋆ and prove the claim of Corollary 1.

Recall that under the dual threshold reduced test Lα,β , the base score is given by

θ (Lα,β) =
∫ β
α

R(s)ds
β−α . Then, Eq. (20) can be re-stated as follows:

(1 − α)
∫ β (α)

α
(R(s) − c)ds = ( β (α) − α)

∫ 1

β (α)
(R(s) − c)ds .

The implicit function theorem implies that β (α) is differentiable; moreover, its derivative
is given by the following expression:

β′(α) =
(1 − α)

(
R(α) − c

)
− 1− β (α)

1−α
∫ 1
β (α) (R(s) − c)ds

(1 − α)
(
R( β (α)) − c

)
+ ( β (α) − α)

(
R( β (α)) − c

)
−

∫ 1
β (α) (R(s) − c)ds

, (23)

where we used the binding constraint defining β (α) to substitute for
∫ β (α)
α

(R(s) − c). By
Eq (20),

∫ 1
β (α) (R(s)−c)ds = (1−α)

(
θ (Lα,β (α))−c

)
; thus, since R( β (α)) > θ (Lα,β (α) > c ,

the denominator is always positive. The function V (α) is clearly differentiable with the
derivative V ′(α) =

(
R( β (α)) − c

)
β′(α) −

(
R(α) − c

)
. Since the denominator in the

equation defining β′(α) is positive and R( β (α)) − c > 0, the sign of V ′(α) is given by

(
R(α) − c

)
Δ(α) −

(
R( β (α)) − c

) 1 − β (α)
1 − α

∫ 1

β (α)
(R(s) − c)ds, (24)

where Δ(α) :=
∫ 1

β (α)
(R(s) − c)ds − ( β (α) − α)

(
R( β (α)) − c

)
.
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We now unpack the right-hand side of the above equation. First of all, note that
R(α) − c < R( β (α)) − c , and

Δ(α) − 1 − β (α)
1 − α

∫ 1

β (α)
(R(s) − c)ds =

∫ β (α)

α
(R(s) − c)ds − ( β (α) − α)

(
R( β (α)) − c

)
< 0,

where the last inequality follows from the definition of β (α). As a result, V ′(α) < 0
whenever R(α) ⩾ c and/or Δ(α) ⩾ 0. It follows that the maximizer of V (α), which
exists due to continuity and compactness, must be below F (c). So, consider α such that
R(α) < c , i.e., α < F (c) and V ′(α) ⩽ 0 with Δ(α) < 0. Let α′ ∈ (α, F (c)) with
Δ(α′) < 0, we want to show that V ′(α′) < 0. Indeed, note that β′(α′′) < 0 for every
α′′ < F (c), thus β (α′) < β (α) that implies

(
R(α′) − c

) Δ(α′)
R( β (α′)) − c

−
(
R(α) − c

) Δ(α)
R( β (α)) − c

=

=
(
R(α) − c

)︸       ︷︷       ︸
<0

(
Δ(α′)

R( β (α′)) − c
− Δ(α)

R( β (α)) − c

)
︸                                      ︷︷                                      ︸

>0

+ Δ(α′)
R( β (α′)) − c︸            ︷︷            ︸

<0

(
R(α′) − R(α)

)︸              ︷︷              ︸
>0

< 0, and

1 − β (α′)
1 − α′

∫ 1

β (α′ )
(R(s) − c)ds − 1 − β (α)

1 − α

∫ 1

β (α)
(R(s) − c)ds =

=
1 − β (α)
1 − α︸     ︷︷     ︸
>0

∫ β (α)

β (α′ )
(R(s) − c)ds︸                    ︷︷                    ︸
>0

+
∫ 1

β (α)
(R(s) − c)ds︸                  ︷︷                  ︸
>0

(
1 − β (α′)
1 − α′ − 1 − β (α)

1 − α

)
︸                           ︷︷                           ︸

>0

> 0.

Taking all pieces together, we conclude that V ′(α′) < 0.
SinceV ′(α) is a continuous function of α,V ′(α) can cross zero at most once and from

above. As a result, there is a unique threshold α⋆ that satisfies the first-order necessary
condition, that is

V ′(α⋆)

= 0 if α⋆ > 0,

⩽ 0 if α⋆ = 0.

Combining Lemmas 1 - 3, we conclude that Lα⋆, β⋆ for β⋆ := β (α⋆) is buyer’s optimal.
It is instructive to express the first-order condition characterizing α⋆ in terms of prim-

itives. Substituting for β′(α) from Eq. (23) inV ′(α) =
(
R( β (α)) − c

)
β′(α) −

(
R(α) − c

)
,

the reader can verify that first-order condition can be re-written as follows:
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average net type in
(
R (α⋆),R ( β (α⋆) )

)︷                    ︸︸                    ︷∫ β (α⋆)
α⋆

(R(s) − c)ds
β (α⋆) − α⋆ ·

average net virtual type in
(
R (α⋆),R ( β (α⋆) )

)︷                                                                  ︸︸                                                                  ︷
(1 − α⋆) (R(α⋆) − c) − (1 − β (α⋆)) (R( β (α⋆)) − c)

β (α⋆) − α⋆
= (R(α⋆) − c) (R( β (α⋆)) − c) if α⋆ > 0,

⩽ (R(α⋆) − c) (R( β (α⋆)) − c) if α⋆ = 0.
(25)

Part 2. Recall that the set of buyer’s optimal reduced test is defined as solutions to
Problem (11). Suppose that a reduced test L is buyer’s optimal. Proposition 1 implies
that there are unique numbers 0 ⩽ α < β ⩽ 1 such that Eq. (5) - Eq. (7) are satisfied.
Then, Lemmas 1 - 3 jointly imply that the buyer’s expected payoff under L is at most
V (α). By the first part of this proposition,V (α) is uniquely maximized at α⋆. It follows
that α = α⋆, β = β⋆ = β (α⋆), which implies that L(1) = Lα⋆, β (α⋆) (1) and

∫ 1
0 sdL(s) =∫ 1

0 sdLα⋆, β (α⋆) (s); in addition, δ (L) = δ (Lα⋆, β (α⋆)).
By Eq. (7), we must have∫ θ (L)

s
L(t )dt ⩾

∫ θ (L)

s
Lα⋆, β⋆ (t )dt = α⋆(θ (L) − s) ∀s ∈ [F −1(α⋆), θ (L)],∫ s

θ (L)
L(t )dt ⩽

∫ s

θ (L)
Lα⋆, β⋆ (t )dt = α⋆(s − θ (L)) ∀s ∈ [θ (L), F −1( β⋆)],

where the equalities follow from the fact that Lα⋆, β⋆ is constant in the middle region.
By taking s to θ (L) on each side, we conclude that L(θ (L)) = α⋆. Then, since L is
non-decreasing, it must be constant throughout the whole middle region, that is L(s) =
α⋆ for all s ∈ [F −1(α⋆), F −1( β⋆)]. As a result, L(F −1(α⋆)) = Lα⋆, β⋆ (F −1(α⋆)) = α⋆

and
∫ F −1 (α⋆)
0 L(s)ds =

∫ F −1 (α⋆)
0 Lα⋆, β⋆ (s)ds which combined with Eq. (7) and Blackwell

[1953] preciselymeans that restricted to the lower interval, i.e., [0, F −1(α⋆)], L is a garbled
version of Lα⋆, β⋆. The same argument applies to the upper interval, i.e., [F −1( β⋆), 1].

Conversely, let L be feasible and satisfy the assumptions of the second part of the
proposition. As shown in the first two parts of the proposition, the dual threshold re-
duced test Lα⋆, β (α⋆) is buyer’s optimal, and it yields him V (α⋆). The fact that L is a
garbled version of Lα⋆, β (α⋆) on each of the two extreme intervals, i.e., [0, F −1(α⋆)] and
[F −1( β⋆), 1], taken together with the fact that Lα⋆, β (α⋆) is constant in the middle region
implies that L is constant in the middle region as well. As a result, δ (L) = δ (Lα⋆, β (α⋆)).
Since the buyer’s expected payoff and the constraint in Problem (11) only depend on L
through its average score, certification probability, posterior mean condition on the null
signal and δ (L), L gives the same expected payoff to the buyer and provides the same in-
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centives to trade to the seller as Lα⋆, β (α⋆) . To sum up, L is a solution to Problem (11) as
well. □

Proof of Corollary 1. We now establish that the optimal threshold α⋆ is zero/positive
whenever the production cost is small/large. As shown above, α⋆ = 0 if and only if
the derivative of the objective at zero, i.e., V ′(0), is non-positive.

Let c = 0. Then, the value of β (0) ∈ (0, 1) is a unique root of the following equation:∫ β (0)
0 R(s)ds
β (0) =

∫ 1
β (0) R(s)ds . It is easy to see that β′(0) defined in Eq. (23) is negative; thus,

V ′(0) = R( β (0)) β′(0) < 0. Continuity of V ′(0) with respect to c implies V ′(0) is still
negative for c > 0 that is sufficiently close 0.

Next, note that β (0) → 1 and β′(0) → − −E[θ]
2(1−E[θ]) as c → E[θ]. It follows that

V ′(0) → 1
2E[θ] > 0. Continuity of V ′(0) with respect to c implies V ′(0) is still positive

for c < E[θ] that is sufficiently close E[θ]. □

Proof of Corollary 2. ByTheorem 1 andCorollary 1, the dual threshold reduced test L0, β (0)

is buyer’s optimal under hard information. Moreover, the second part of this theorem im-
plies that the reduced test L in which the buyer receives his (conditional) average score
with certainty attains the same expected payoff, that is

L(s) =


1 − β (0) if s ⩾

∫ 1
0 sd

(
L0, β (0) ( s )
1− β (0)

)
,

0 if s <
∫ 1
0 sd

(
L0, β (0) ( s )
1− β (0)

)
.

Given this test, the seller will be incentivized to offer the base of price of θ (L) even
if information is soft. Thus, the buyer’s best expected payoff under hard information is
weakly lower than under soft information. Since under both hard and soft information
with c = 0 trade happens with probability 1 (see Theorem 1, Corollary 1 and Proposition
3), the sumof buyer’s expected payoff and seller’s expected profit equals toE[θ]. Conclude
that the seller weakly prefers the buyer’s to learn through hard information. □

Proof of Proposition 4. Part 1. First of all, we note that the buyer’s payoff is zero under
the completely informative reduced test , whereas the seller obtains the whole expected
surplus, that is

U (F ) = 0, Π(F ) = E[max{0, θ − c }] = E[θ] − c +
∫ c

0
F (s)ds .

It follows that the seller’s profit under a feasible reduced test can be re-written as

Π(L) = Π(F ) −U (L) −
∫ c

0
(F (s) − L(s))ds,
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where the last term is loss from imperfect learning— it is non-negative by Condition (7).
Now, Let L be a feasible reduced test withU (L) = 0. Since Π(F ) ⩾ Π(L′) for all feasible
reduced tests L′, the reduced test L is efficient if and only if Π(F ) = Π(L).

Part 2. To characterize the set of efficient reduced tests that yield a positive expected
payoff to the buyer, take u ∈

(
0,U (Lα⋆, β (α⋆))

]
and consider the following program, which

is similar to Problem (11):

sup
0⩽α<β⩽1, L

Π(L) subject to U (L) ⩾ u, (26)

Eq. (5) - Eq. (7), (θ (L) − c) (1 − L(1)) ⩾
∫ 1

θ (L)
(s − θ (L))dL(s).

In words, we aim at maximizing the seller’s expected profit amongst feasible reduced
tests subject to providing the buyer with at least u > 0. Similarly to the buyer’s optimal
reduced tests, we will characterize the set of solutions to the above problem in four steps.

Step 1. Take any feasible reduced test L that satisfies the constraints of Problem (26)
for certain 0 ⩽ α < β ⩽ 1. In the main text, see Eq. (12), we established that U (L) =∫ 1
0 sdL(s) − θ (L)L(1) + δ (L), where δ (L) =

∫ θ (L)
0 L(s)ds . Furthermore, there exists a

unique pair of thresholds α ∈ [0, α] and β ∈ [ β, 1] such that the reduced test Lα,βα,β , which

is defined below, is feasible with θ (L) = θ (Lα,βα,β) and δ (L) = δ (L
α,β

α,β),

Lα,βα,β (s) =



F (s) if F (s) < α,

α if F (s) ⩾ α ∧ s < θ (Lα,β),

β + α − β if F (s) < β ∧ s ⩾ θ (Lα,β),

F (s) + α − β if F (s) ⩾ β.

It follows that the buyer’s expected payoff under Lα,βα,β is the same as under the original

reduced test L. By construction, since c < θ (L) = θ (Lα,β), we have that
∫ c
0 Lα,βα,β (s) ⩾∫ c

0 L(s)ds . In other words, the seller weakly prefers Lα,βα,β to L. By construction, Lα,βα,β and
Lα,β have the same certification probability, average score, posterior mean conditional on

the null signal, δ (Lα,βα,β) = δ (Lα,β) and
∫ c
0 Lα,βα,β (s)ds =

∫ c
0 Lα,β (s)ds . To sum up, if there

is a solution to Problem (26), then there exists a dual threshold reduced test that yields
the same expected payoff-profit pair.

Step 2. Consider a dual threshold reduced test Lα,β . Using the representation from the
first part of the proof, the seller’s expected profit can be expressed as follows:

Π(Lα,β) = Π(F ) −U (Lα,β) −
∫ F (c )∨α

α
(c − R(s))ds,
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where U (Lα,β) =
∫ 1
β
(R(s) − θ (Lα,β))ds , θ (Lα,β) =

∫ β
α

R(s)ds
β−α and R is the inverse of

the prior. Recall that β (α), see Eq. (20), is the unique threshold for which the seller
is indifferent between trading with the buyer who has the null signal and ignoring this
buyer. It is easy to see that Problem (26) can be re-stated as

sup
0⩽α<β⩽1

Π(Lα,β) subject to U (Lα,β) ⩾ u, β ⩾ β (α),

We now show that there is always a solution in which both constraint bind. First,
suppose that the thresholds (α0, β0) are such thatU (Lα0, β0) > u and β0 ⩾ β (α0). Clearly,
we must have β0 < 1, because u > 0. Let βε = β + ε for ε ⩾ 0. It is easy to see that
the buyer’s expected payoff is decreasing, thus the seller’s expected profit is increasing,
in ε. Starting from ε = 0, we can keep increasing ε and improving the objective in
Problem (26) till U (Lα0, βε ) = u. Second, suppose that the thresholds (α0, β0) are such
thatU (Lα0, β0) = u and β0 > β (α0). Let αε = α+ε for ε ⩾ 0. SinceU (Lα,β) is decreasing
in both thresholds, for sufficiently small ε there exists a unique β (αε) ⩽ βε < β0 such
that U (Lαε, βε ) = u. Clearly, the seller’s expected profit is non-decreasing in ε; thus, we
can (weakly) improve the objective in Problem (26) by increasing ε from 0 to the point
at which βε = β (αε).

Step 3. Consider the family of reduced tests Lα,β (α) , where β (α) is chosen according
to Eq. (20). In the proof of Proposition 1, we showed that the buyer’s expected payoff
V (α) as a function of α is maximized at a unique value α⋆ ∈ [0, F (c)); moreover,V (α) is
decreasing on [α⋆, 1). It follows that for each u ∈

(
0,U (Lα⋆, β (α⋆))

]
there exists a unique

α ∈ [α⋆, 1) such that U (Lα,β (α)) = u. Since α⋆ < F (c), even if there exists another
threshold α′ < α⋆withU (Lα,β (α)) = u = U (Lα′, β (α′)) = u, the seller would strictly prefer
α ⩾ α⋆. To sum up, the family of dual threshold reduced tests Lα,β (α) with α ∈ [F (c), 1)
traces the Pareto frontier (except the seller’s optimum).

Step 4. We are finally ready to prove the second part of the proposition. Take an
efficient reduced test L withU (L) > 0. By definition, this must be a solution to Problem
(26) for u = U (L) ∈

(
0,U (Lα⋆, β (α⋆))

]
. The three previous steps jointly imply that there

exists the dual threshold reduced test Lα,β (α) with α ⩾ α⋆ such that U (Lα,β (α)) = U (L)
and Π(Lα,β (α)) = Π(L). Conversely, take a feasible reduced test L such that for some
α ⩾ α⋆, we haveU (Lα,β (α)) = U (L) and Π(Lα,β (α)) = Π(L). Since Lα,β (α) is efficient, L
must be efficient as well. □
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11 Online Appendix

11.1 Feasibility

Proposition 1 is still true even if the distribution of buyer’s valuation has atoms and/or
its support is not connected but includes {0, 1}. We shall prove the proposition for such
general priors, and we will later use this more general characterization in Section 8.

Proof of Proposition 1. We first establish that every dual threshold reduced test is feasible
by constructing a specific test that generates a given dual threshold reduced test Lα,β .
Then, we will prove the proposition.

Generating dual threshold reduced tests. Take 0 ⩽ α ⩽ β ⩽ 1, and consider the test(
H (·|θ)

)
θ∈[0,1] in which the buyer receives a perfectly informative score for low/high val-

uations till the certification probability at the bottom/top reaches α/β, that is H (s |θ) =
1{s⩾θ} · λα,β (θ), where

λα,β (θ) :=



1 if F (θ) < α ∨ F (θ−) > β,
α−F (θ−)

F (θ)−F (θ−) if F (θ−) ⩽ α ⩽ F (θ) ∧ F (θ) ≠ F (θ−),
F (θ)−β

F (θ)−F (θ−) if F (θ−) ⩽ β ⩽ F (θ) ∧ F (θ) ≠ F (θ−),

0 if F (θ−) > α ∧ F (θ) < β.

By construction, every score generated by this test is an unbiased signal. To guarantee
that the buyer has no certificate for intermediate valuations with probability β − α, ran-
domization might be needed when the prior distribution has mass points.

We claim that the distribution of signals under
(
H (·|θ)

)
θ∈[0,1] is given by the dual

threshold reduced test Lα,β as defined in Eq. (4). Indeed, direct computations yield that

• if F (s) < α, then∫ 1

0
H (s |θ)dF (θ) =

∫ 1

0
1[θ,1] (s)dF (θ) = F (s) = Lα,β (s);

• if α ⩽ F (s) < β, then∫ 1

0
H (s |θ)dF (θ) =

∫
{θ:F (θ)<α}

dF (θ) +
(
α − F (F −1(α)−)

)
= α = Lα,β (s),

where F −1 is the generalized inverse defined as F −1(τ) := inf{θ ∈ [0, 1] |F (θ) ⩾ τ};
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• if F (s) ⩾ β, then∫ 1

0
H (s |θ)dF (θ) = α+

∫
{θ:F (θ−)>β}

1[θ,1] (s)dF (θ)+
(
F (F −1( β+))−β

)
= F (s)+α−β = Lα,β (s).

“If” direction. We now are in position to prove the “if” part of the proposition. Con-
sider a reduced test L, and suppose that there are 0 ⩽ α ⩽ β ⩽ 1 such that Eq. (5) - Eq.
(7) hold. We need to show that the reduced test L is feasible.

Suppose that L(1) = 0, thus L ≡ 0. Then, by construction, L = L0,1, which is feasible.
Next, suppose that L(1) > 0. By Eq. (5), L(1) = Lα,β (1) = 1 + α − β, therefore Eq.
(6) and Eq. (7) imply that L(s)

1+α−β is a mean-preserving contraction of Lα,β (s)
1+α−β . It is well-

known, i.e., see Gentzkow and Kamenica [2016], that there exists a family of distributions(
H (·|θ)

)
θ∈[0,1] such that

L(s) =
∫ 1

0
H (s |θ)dLα,β (θ) ∀s ∈ [0, 1],∫ s

0
t dL(t ) =

∫ 1

0
θH (s |θ)dLα,β (θ) ∀s ∈ [0, 1] .

As seen from the definition of Lα β and λα,β , we have Lα,β (θ) =
∫ θ
0 λα,β (s)dF (s) for

all θ ∈ [0, 1]. Substituting for Lα,β (θ) in the two equations above, we see that that the
test

(
H (·|θ) · λα,β (θ)

)
θ∈[0,1] generates the reduced test L, i.e., Eq. (2) and Eq. (3) hold.

“Only if” direction. Let L be a feasible reduced test. We shall show that there exist two
thresholds 0 ⩽ α ⩽ β ⩽ 1 such that Eq. (5) - Eq. (7) hold.

Suppose that L(1) = 0, thus L ≡ 0. Recall that L0,1 ≡ 0, therefore the required condi-
tions hold for α = 0 and β = 1. Finally, suppose that L(1) > 0. Since L is feasible, there
exists a test H such that Eq. (2) and Eq. (3) hold. By definition, L(1) =

∫ 1
0 H (1|θ)dF (θ)

and for each θ ∈ [0, 1], the function s ↦→ H (s |θ) ∈ [0, 1] is non-decreasing. We claim that
this gives us the following bounds:

L0,1−L(1) (s) ⩽
∫ s

0
H (1|θ)dF (θ) ⩽ LL(1),1(s) ∀s ∈ [0, 1] . (27)

Indeed, for each s ∈ [0, 1],
∫ s
0 (1 − H (1|θ))dF (θ) ⩽

∫ 1
0 (1 − H (1|θ))dF (θ) which can be

re-arranged as follows:

F (s) − 1 + L(1) ≤
s∫

0

H (1|θ)dF (θ).
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By definition, L0,1−L(1) (s) = max{0, F (s) − 1 + L(1)} which combined with the above
inequality implies the lower bound in Eq. (27). The upper bound in Eq. (27) can be
shown analogously.

Since Eq. (27) holds for all s ∈ [0, 1], integrating throughout by parts, we obtain

1∫
0

sdL0,1−L(1) (s)ds ⩾ L(1) −
1∫

0

©«
s∫

0

H (1|θ)dF (θ)ª®¬ ds ⩾
1∫

0

sdLL(1),1(s) (28)

Using Eq. (4), the reader can verify that for each 0 ⩽ α < α′ ⩽ L(1), we have Lα′,1+α′−L(1) (s) ⩾
Lα,1+α−L(1) (s) for all s ∈ [0, 1], and the inequality is strict on some subset of [0, 1] of posi-

tive (Lebesgue) measure. It follows that α ∈ [0,L(1)] ↦→
1∫
0
sdLα,1+α−L(1) (s) is increasing,

thus there exists a unique number α ∈ [0,L(1)] such that for β := 1 + α − L(1), we have

∫ 1

0
sdLα,β (s) = L(1) −

1∫
0

©«
s∫

0

H (1|θ)dF (θ)ª®¬ ds
We now show that Eq. (5) - Eq. (7) hold for

∫ s
0 H (1|θ)dF (θ). The first of this

equations, namely Eq. (5), is satisfied by construction as Lα,β (1) = 1 + α − β = L(1) =∫ 1
0 H (1|θ)dF (θ), where the last equality is due to Eq. (2). Using this fact, Eq. (3) and
integration by parts, we obtain that

L(1) −
1∫

0

©«
s∫

0

H (1|θ)dF (θ)ª®¬ ds =
∫ 1

0
t d

(∫ t

0
H (1|θ)dF (θ)

)
,

which establishes Eq. (6). As for Eq. (7), if F (s) < α, then Lα,β (s) = LL(1),1(s) that
implies ∫ s

0

(∫ t

0
H (1|θ)dF (θ)

)
dt ⩽

∫ s

0
Lα,β (t )dt .

Since the average score under Lα,β is the same as under
∫ s
0 H (1|θ)dF (θ); if F (s) ⩾ 1 +

α − L(1), then Lα,β (s) = L0,L(1) (s) that implies∫ 1

s

(∫ t

0
H (1|θ)dF (θ)

)
dt ⩾

∫ 1

s
Lα,β (t )dt .

Combining the above inequalities with the fact that Lα,β (s) is constant for s such that
α ⩽ F (s) < 1 + α − L(1), we conclude that Eq. (7) is satisfied for

∫ s
0 H (1|θ)dF (θ).

It remains to show that Eq. (5) - Eq. (7) hold for the original reduced test L. Using
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the fact that L(1) =
∫ 1
0 H (1|θ)dF (θ), Eq. (2) and Eq. (3) can be re-written as follows:

L(s)
L(1) =

∫ 1

0

H (s |t )
H (1|t ) d

©«
∫ t
0 H (1|θ)dF (θ)∫ 1
0 H (1|θ)dF (θ)

ª®¬ ∀s ∈ [0, 1],

∫ s

0
t d

(
L(t )
L(1)

)
=

∫ 1

0
t
H (s |t )
H (1|t ) d

©«
∫ t
0 H (1|θ)dF (θ)∫ 1
0 H (1|θ)dF (θ)

ª®¬ ∀s ∈ [0, 1],

where we use the convention that 0
0 = 1. Blackwell [1953], Gentzkow and Kamenica

[2016] imply that L(s)
L(1) is a mean-preserving contraction of

∫ s
0 H (1|θ)dF (θ)∫ 1
0 H (1|θ)dF (θ)

; equivalently,

∫ 1

0
t dL(t ) =

∫ 1

0
t d

(∫ t

0
H (1|θ)dF (θ)

)
=

∫ 1

0
t dLα,β (t ),∫ s

0
L(t )dt ⩽

∫ s

0

(∫ t

0
H (1|θ)dF (θ)

)
dt ⩽

∫ s

0
Lα,β (t )dt ∀s ∈ [0, 1] .

The first line follows from the definition of these thresholds, and the second line follows
from the fact that Eq. (7) is satisfied by

∫ s
0 H (1|θ)dF (θ). □

11.2 Proofs for the general model

Proof of Proposition 5. Part 1. Fix a feasible reduce test L with 1 − L(1) > 0. Then, the
posterior mean conditional on the null signal is well-defined, and it is determined by Eq.
(1). As shown in Section 9.4, there is no loss of generality to focus on quantity-price
pairs in which the buyer with a score prefers to take the contingent quantity-price pair
(p (s), q (s)), and the buyer with the null signal takes the base quantity-price pair, that is

θ (L)q − p ⩾ 0, sq (s) − p (s) ⩾ max{0, sq − p} ∀s ∈ [0, 1] .

For the given quantities, the seller sets her prices at the highest level so that the above
constraints are still satisfied, i.e.,

p = θ (L)q, p (s) = sq (s) −max{0, s − θ (L)}q ∀s ∈ [0, 1] .
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Then, the seller’s expected profit can be expressed as follows:

1∫
0

(
p (s) −C (q (s))

)
dL(s) + (1 − L(1)) (p −C (q)) =

=

1∫
0

(
sq (s) −C (q (s)) −max{0, s − θ (L)}q

)
dL(s) + (1 − L(1))θ (L)q −C (q)) =

=

1∫
0

(
sq (s) −C (q (s))

)
dL(s) + (1 − L(1)) (ν (L)q −C (q)),

where ν (L) = θ (L) −
∫ 1
θ (L) (s−θ (L))dL(s)

1−L(1) is the virtual value associated with the null signal.
The claim of the proposition follows from pointwise maximization of the above expres-
sion.

Part 2. Now, let L be a feasible reduced test in which 1−L(1) = 0. Since the likelihood
of the null signal is zero, there is no value from offering a base price-quantity pair —
the seller can extract the whole surplus conditional on s ≠ ∅ by setting q (s) = Q (s),
p (s) = sq (s) and choosing (p, q) in a way that the buyer with a certificate will never
prefer the this base price-quantity pair, i.e., any (p, q) such that q − p ⩽ 1 will do.

□

Proof of Proposition 2. Part 1. Since ι(0) = 0, the buyer’s expected payoff under the com-
pletely informative reduced test is zero; on the other hand, the seller obtains the whole
expected surplus. Then, we note that any feasible reduced test L with 1 − L(1) = 0 yields
the same payoff-profit pair as the completely informative reduced test. As a result, if L is
efficient, then F must be efficient as well.

Part 2. Take a feasible reduced test L with 1 − L(1) > 0. Since L is feasible, it must
satisfy Conditions (5) - (7) for some 0 ⩽ α < β ⩽ 1. We now construct a dual threshold
test that is weakly better for the buyer than L. If δ (L) = δ (Lα,β), then Lα,β is a dual
threshold test which yields the same payoff as L. If δ (L) < δ (Lα,β), then we must have
β < 1. Repeating the construction used in Lemma 2, define (α0, β0) := (α, β), and
αε := α + ε, βε := β + ε for ε ⩾ 0. Moreover, let δε be given by

δε := δ +
(
θ (Lαε, βε ) −

∫ 1

0
sdLαε, βε (s)

)
−

(
θ (Lα,β) −

∫ 1

0
sdLα,β (s)

)
.

Then, for every ε ∈ [0, 1 − β] with δε ⩽ δ (Lαε, βε ), there exists a feasible reduced test Lε

such that the virtual value under Lε is the same as under L, i.e., ν (Lε) = ν (L). Note that
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the buyer’s information rents
∫ 1
θ (Lε) (s − θ (L

ε))dLε (s) is an increasing function of ε which
contradicts optimality of L. We conclude that if L is buyer’s optimal then δ (L) = δ (Lα,β)
that implies that Lα,β is buyer’s optimal as well.

Part 3. Take an efficient reduced test L with 1 − L(1) > 0. Since L is feasible, it must
satisfy Conditions (5) - (7) for some 0 ⩽ α < β ⩽ 1. Moreover, as shown in the main text,
there exists a unique pair of thresholds α ∈ [0, α] and β ∈ [ β, 1] such that the reduced test
Lα,βα,β , which is defined in Eq. (14), is feasible with θ (L) = θ (Lα,βα,β) and δ (L) = δ (L

α,β

α,β).

Below we show that the reduced test Lα,βα,β is more (Blackwell) informative than L, i.e.
s∫

0
Lα,βα,β (t ) ⩾

s∫
0
L(t )dt for all s ∈ [0, 1]. By construction, Lα,βα,β (s) = Lα,β (s) for F (s) <

α and Lα,βα,β (s) is constant for F (s) ⩾ α and s < θ (Lα,β). Then,
∫ θ (Lα,β )
0 Lα,βα,β (s)ds =∫ θ (Lα,β )

0 Lα,βds and the fact Lα,β is more informative than L jointly imply that
s∫

0
Lα,βα,β (t ) ⩾

s∫
0
L(t )dt holds for s < θ (Lα,β). The argument is identical for s ⩾ θ (Lα,β), because the

average scores under Lα,βα,β and L coincide.
Therefore, by convexity of the surplus functionW (s) we have that∫ 1

0
W (s)dLα,βα,β (s) ⩾

∫ 1

0
W (s)dL(s).

Since Lα,βα,β and L yield the same payoff to the buyer, Lα,βα,β is (weakly) preferred by the

seller to L. It follows that Lα,βα,β is efficient as well. □

Proof of Example 3. We shall show Problem (26) always has a solution that belongs to
the family of dual threshold reduced test. The claim is trivial for u = 0, because the
completely informative reduced test necessarily maximizes the seller’s expected profit.
And, since certification is costless such test yields zero to the buyer. Moreover, the result
has already been established for the buyer’s maximal payoff, see Theorem 1. So, in what
follows we consider u ∈

(
0,U (Lα⋆, β (α⋆)

)
.

By Proposition 2, the family of tests Lα,βα,β can trace the Pareto frontier. Clearly,

θ (Lα,βα,β) =
α+β
2 ; thus, Lα,βα,β is feasible if and only if α + β = α + β. Direct computa-

tion gives that the buyer’s information rent is 1
2 (1 − α) (1 − β). Importantly, both the

score conditional on the null signal and buyer’s information rent only depend on α and
β. The other two threshold, namely α and β, enter the seller’s profit and buyer’s payoff

only through the virtual value ν (Lα,βα,β) =
α+β
2 −

1
2 (1−α) (1−β)
β−α and probability of the null

signal β−α. Letting κ := β−α ∈ [0, β−α], Problem (26) in our setting can be re-written
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as

sup
0⩽α⩽ β⩽1, κ

α∫
0

(
s2

2

)
ds +

1∫
β

(
s2

2

)
ds + ( β − α)

(α + β)2

8
− κ

8
©«(α + β)2 −

(
(α + β) −

(1 − α) (1 − β)
κ

)2ª®¬
subject to

(
α + β −

(1 − α) (1 − β)
κ

)
· (1 − α) (1 − β) ⩾ 4u,

0 ⩽ κ ⩽ β − α and α + β −
(1 − α) (1 − β)

κ
⩾ 0.

It is easy to see that the above problem admits a maximizer such that β < 1 and κ > 0; more-

over, the first constraint binds at the optimum, because the objective is decreasing in κ, whereas

the buyer’s payoff is increasing. Solve for κ from the binding constraint and substitute it into the

objective to obtain the following equivalent formulation:

sup
0⩽α<β⩽1

α∫
0

(
s2

2

)
ds +

1∫
β

(
s2

2

)
ds + ( β − α)

(α + β)2

8
− (α + β)

(1 − α) (1 − β)
8

−
u
2

(29)

subject to

(
α + β −

(1 − α) (1 − β)
β − α

)
· (1 − α) (1 − β) ⩾ 4u .

Clearly, at the optimum the constraint in (29) binds if and only if a dual reduced threshold

test is efficient for this given value of u. By the way of contradiction, suppose that α and β solves

Problem (29) and the constraint is slack. As discussed above, we necessarily have α < β < 1. The

reader can verify that the second derivative of the objective with respect to β equals to 1− β
4 > 0,

which contradicts optimality of α, β with the constraint being slack. □

11.3 The game without commitment

In section 6.2 we argued that when the seller does not have commitment power, for any
equilibrium of the ensuing disclosure game there exists another equilibrium in which the
buyer discloses nothing and is weakly better off. We provide a formal proof of this claim
below.

Proof of Corollary 3. Consider an equilibrium of the disclosure game discussed in the text,
that is i) the buyer’s disclosure strategy d∗ : [0, 1] → [0, 1] that maps his score to a
disclosure probability and ii) the seller’s selling strategy that consists of the base price p∗

and score-contingent prices
(
p∗(s)

)
s∈[0,1] . As in the setting with commitment, we shall

break ties in favor of the buyer whenever the seller is indifferent,
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First of all, since the seller cannot commit, upon observing a score s ∈ [0, 1], she
optimally sets p∗(s) = s thereby extracting the whole surplus. As a response, the buyer
with a score s > p∗ will never find it optimal to disclose, i.e., d∗(s) = 0. The buyer’s with
a score s < p∗ is indifferent between disclosing his certificate and concealing it but buying
the good.

Taking into an account the buyer’s response, the seller’s ex-ante profit π∗(p) as a func-
tion of the base price p alone is given by

π∗(p) := p
(
L(1) − L(p−) + (1 − L(1)) · 1[0,θ (L)] (p) −

∫
[p,p∗]

d (s)dL(s)
)
.

By definition, π∗(p∗) ⩾ π∗(p) for all p ∈ [0, 1].
We now show that there always exists a different equilibrium in which the buyer never

discloses his certificate and the seller’s sets a weakly lower base price. Let π∗∗(p) be the
seller’s profit from offering the base price p whenever the buyer’s always conceals his
certificate:

π∗∗(p) := p
(
L(1) − L(p−) + (1 − L(1)) · 1[0,θ (L)] (p)

)
.

By construction, the function π∗∗ is upper-semi continuous; thus, the set of its maximizer
is non-empty and compact. Let p∗∗ be the smallest such maximizer. Examination of π∗∗

shows that it coincides with π∗ for all prices above p∗, thus π∗∗(p∗) ⩾ π∗∗(p) for all
p ∈ [p∗, 1]. It follows that p∗∗ is lower p∗.

To sum up, in our search for buyer optimal equilibria and tests, it is without loss to
consider equilibria in which a certificate is never shown, i.e., information is always soft.
By Roesler and Szentes [2017]’s arguments we get the same buyer’s optimal reduced tests
as in Proposition 3. □

11.4 Space of mechanisms

Consider the general setting of Section 8, we shall show that offering price-quantity pairs
is without loss of generality for the seller. Formally, the seller commits to a mechanism
that specifies a message space M and, for each message m ∈ M , the following objects: a
probability of the seller requesting a certificate χ(m), a quantity-price given that a certifi-
cate is not requested (q (0|m), p (0|m)), a quantity-price given that a certificate is requested
(q (1, ∅|m), p (1, ∅|m)) but not shown and a quantity-price pair given that a certificate is
requested and shown (q (1, s |m), p (1, s |m))s∈[0,1] .

For the given informational endowment, which is specified by L, and mechanism, the
buyer is facing a simple decision problem in which for every signal s ∈ [0, 1] ∪ {∅} he first
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selects a message m ∈ M to report. Then, if a certificate is not requested, the buyer can
take (q (0|m), p (0|m)) or walk away. Similarly, if it is requested, then the buyer with the
null signal can take (q (1, ∅|m), p (1, ∅|m)) or walk away, the buyer with a score s can take
(q (1, s |m), p (1, s |m)) in addition to the previous two options.

Take the buyer’s strategy that maximizes his expected payoff. Then, we define a new
mechanism in which the message space is [0, 1] ∪ {∅}, χ(s) = 1 for all s ∈ [0, 1] and
χ(∅) = 0. If 1 − L(1) > 0, then let (q (0|∅), p (0|∅)) be the expected quantity-price pair
received by the buyer with the null signal under the original mechanism and his optimal
strategy; otherwise, let this quantity-price pair be as in the original mechanism. Similarly,
for each s ∈ [0, 1], let (q (0, s |s), p (0, s |s)) be the expected quantity-price pair received
by the buyer with the signal s under the previous mechanism and his optimal strategy.
The remaining quantity-price pairs are such that the quantity is zero and price is large
enough so that the buyer will never take it. By construction, under the new mechanism
the buyer’s optimal strategy is to report her signal and take the trade that is designed for
him, i.e., the buyer with a score s ∈ [0, 1] receives (q (0, s |s), p (0, s |s)), that is

sq (0, s |s) − p (0, s |s) ⩾ max{0, sq (0|∅) − p (0|∅)}.

Similarly, if 1 − L(1) > 0, then θ (L) is well-defined, and the buyer with the null signal
receives a non-negative expected payoff from taking (q (0|∅), p (0|∅)),

θ (L)q (0|∅) − p (0|∅) ⩾ 0.

We note that the new mechanism delivers each buyer’s type the expected quantity-
price pair which he obtains under the first mechanism. The seller’s expected profit is then
weakly higher under the new mechanism, because her production cost is convex C .
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