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Abstract

This paper builds a theory of dynamic pricing for the sale of timed goods. Themain friction
is private and evolving valuation of the buyer prior to the date of consumption, which follows
a Poisson process. A combination of membership fee and continuously increasing prices in-
duces a threshold response from the buyer, endogenously segmenting the market along timing
of purchase. This pricing mechanism achieves the deterministic global optimum. The tools
developed here are shown to be useful in thinking about global incentives in dynamic mech-
anisms, and mapping dynamic pricing to the classic taxonomy of consumer-producer surplus
and deadweight loss.

1 Introduction

Two-part tariff is a commonly used pricing strategy. Typically the first part is a flat payment that
aims to extract some part of the total surplus and the second part segments the market of buyers.
A uniform fee to enter an amusement park followed by individual prices for high-end rides is an
oft invoked example. This paper studies trade of timed goods where the second component of the
two-part tariff endogenously sorts buyers across timing of purchase. Examples to keep in mind are
concerts, hotels and air travel.

Suppose a buyer wants to consume a good at a specified future date. The value of the good
at the date of consumption is drawn from some prior and then evolves over time according to a
Poisson process. The seller is not privy to this value. She posts a menu with an upfront payment
and time dependent prices. All buyer types pay the first part. Then, as their values evolve, they
sort themselves into different buckets of when (if at all) to trade along what turns out to be a
continuously increasing price path.

The optimal pricing scheme within this class of instruments is completely characterized. The
buyer faces an optimal stopping problem for any given pricing mechanism. The seller in turn solves
a complex dynamic optimization problem of choosing the profit maximizing mechanism. This is
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reduced to the choice of a single threshold, viz. the final spot price at the date of consumption, from
which the optimal price path and upfront payment are backward imputed. Next, a description
of the pricing mechanism in the language of consumer-producer surplus and deadweight loss is
presented. The flat fee transfers some part of consumer surplus, and the changing price schedule
transfers some deadweight loss to producer surplus. Finally, using tools of dynamic mechanism
design, it is shown that the allocation implemented by the pricing mechanism achieves the global
(deterministic) optimum.

This paper builds on the two-period sequential screening problems pioneered by Courty and Li
[2000], and developed further by Esö and Szentes [2007], Krähmer and Strausz [2015] and Akan,
Ata, and Dana Jr. [2015], amongst others. They study an option pricing mechanism wherein the
buyer picks a menu in the first period from which a price in the second period is then chosen. In
contrast, we study a continuous-time finite horizon problem with one menu where an upfront fee
and time dependent price path together determine the structure of price discrimination.

In a closely related paper, Deb [2014] studies the sale of a single good over an infinite horizon
where the value of the buyer can change at most once through a Poisson shock. It provides a
partial characterization of the optimum through two prices—an introductory and a final price.
The buyer’s choice as an optimal stopping problem with changing valuations finds resonance in
Kruse and Strack [2015]. Also, related is the study of dynamic price discrimination in a repeated
sales setting with Brownian shocks by Bergemann and Strack [2015]. Bergemann and Välimäki
[2019] offers a review of dynamic mechanism design—the principal-agent problem with privately
evolving agent’s valuations falls into that realm.

A salient departure from much of this literature is that we study a model in which the standard
first-order approach fails generically. For any prior distribution and interior Poisson arrival rate,
the envelope theorem is not sufficient to guarantee incentive compatibility. Inspired from the study
of static multidimensional screening (see Armstrong [2016]), we turn to indirect mechanisms to
understand which class of constraints may be bind in the Myersonian characterizations of direct
mechanisms.

We pick the Poisson (or renewal Markov) model for the evolution of valuations for two reasons.
It is tractable enough to be solved in closed form and still interesting enough to deliver insights about
the structure of binding constraints, and correspondingly the simple economics of dynamic price
discrimination. In fact, it has been suggested as a canonical setup to understand the impact of global
incentive constraints in dynamic mechanisms (see Pavan, Segal, and Toikka [2014] and Bergemann
and Välimäki [2019]).

Moreover, a leading application of dynamic mechanism design is the study of optimal taxation
in which types are assumed to be earnings (see Stantcheva [2020]). Recent work in labor economics
has established that the earnings follows a job-ladder structure (see Arellano et al. [2017] and Gu-
venen et al. [2021]). This violates the standardly used AR(1) family of processes for earnings (eg.
Farhi and Werning [2013]); because earnings are sticky and feature some loss of history upon the
arrival of a new event such as unemployment or promotion, properties approximated by the re-
newal Markov process. Analogously, for the sequential pricing model, the process captures what we
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call the value-ladder: Buyer’s valuation do not change too frequently. And, conditional on change,
lower valuation buyers are more likely to increase their valuation and high valuation buyers to see
a drop in valuation.

Before delving into the general model, we explore a two period version. The solution to this
problem helps to fix ideas about the general model. It also provides pedagogical value in understand-
ing the economics of sequential pricing in a simple way, especially when global incentive constraints
bind at the optimum.

2 An example

A buyer wants to consume a good (or service) at the end of date 2. At date 1, he has a value for
it, say v1, that is distributed according to F on the unit interval. Come date 2, the value will re-
main the same with probability 1 − λ, that is v2 = v1, and it will be redrawn again from F with
probability λ, that is v2 ∼ F . Here v2 is payoff relevant, and v1 acts an "estimate" of the eventual
consumption value with precision 1−λ. The cost of production for the seller is zero. For simplicity
of exposition, assume F is uniform on [0, 1] and λ = 0.5. The question we ask is this: What pricing
mechanism(s) should the seller employ to maximize her profit?

Optimal pricing mechanism. We consider a menu of dynamic prices as depicted in Figure 1.
The contract space is given by 〈M , p, α〉. At the start the buyer gets to choose between paying a
membership/entree fee M or ending the contract. If he pays M , he is granted access to two prices.
At date 1, he can buy the good for a forward price p, or he can forgo p at date 1, and instead buy
the good at date 2 for a spot price α. If he does not exercise either price, there is no trade. The key
distinction between p and α is that the former is binding, it is paid no matter the realization of v2,
whereas if the buyer waits till date 2, he can decide upon observing v2 whether to trade at α.

We will construct the mechanism depicted in Figure 1 in three gradual steps. Figure 2 repre-
sents the optimal trading regions for these progressively enriched pricing mechanisms. The x -axis
represents valuation in the first period, y-axis valuation in the second period, and the shaded area
represents the region of trade. Since the cost of the seller is zero, efficiency demands that the whole
square in Figure 2 should be shaded.

In the first case, in Figure 2a, the seller ignores the dynamics of the problem and offers a spot
price, say α. This earns the her an expected profit of αP(v2 > α) = α(1−F (α)), where the equality
follows from the fact that from an ex ante perspective v2 ∼ F . Finally, since F is uniform on [0, 1],
this term is α(1 − α), and it is maximized at α = 1/2, giving an expected profit of 1/4.

The second contract, given by 〈M , α〉, works as follows: charge M at the start of date 1, the
payment of which grants the buyer the right to buy the good at date 2 for a spot price α. If
the buyer does not pay M , the “game" ends with no trade. It is easy to show that the seller sets
M (α) = E [(v2 − α)+ | v1 = 0], i.e. the surplus of the lowest first period value buyer.1 The expected
profit is then given by M (α) + α(1 − α), which is maximized at α = 1/3. This gives M = 1/9 and an

1Here a+ denotes max{0, a}.
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Figure 1: Timing of the contract 〈M , p, α〉.
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(d) Structure of trade at the optimum

Figure 2: Dynamic pricing in a two period example, F is uniform and λ = 1/2.
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expected profit of 1/3. So, all types agree to pay M , and as Figure 2b shows, trade takes place when
v2 ≥ 1/3.

Going further, we ask: Can the seller use the first period type to screen the buyers and is that
profitable? The contract space is now given by 〈M , p, α〉, and its timing, as explained before, is
depicted in Figure 1. Again, M is set to be the the expected surplus of the buyer whose valuation
at date 1 is zero. The new price p is chosen by making the buyers with first period valuation above
α indifferent between trading and waiting:

E[v2 |v1 = α] − p (α)︸                     ︷︷                     ︸
net value for v1 = α from taking the forward price

= E[
(
v2 − α

)+
|v1 = α]︸                     ︷︷                     ︸

net value for v1 = α from waiting for spot price

So, M is chosen to extract expected surplus of the lowest first period type, and not tinker with
selection. And, p is chosen to make v1 = α indifferent between trading now and waiting, where
α is also the final spot price. As a consequence, the unit square is split into three regions—trade in
period 1, trade in period 2 and no trade. The no trade region forms a smaller square of side α (see
Figure 2c).

Putting it all together, the seller will choose M = M (α) := E
[
(v2 − α)+ |v1 = 0

]
and p =

p (α) := E [v2 |v1 = α] − M (α). The expected profit of the seller is given by Π(α) = M (α) +

p (α)P(v1 > α) + αP(v2 > α |v1 < α). Substuiting and simplifying, we get:

Π(α) := α(1 − α) + M (α) + 1/2 × (1 − α)
∫ α

0
vdF (v ).

where the second and third terms represent respectively the extra profit from introducing upfront
payment M and time dependent price p.

This optimization problem yields α =
√
10−2
3 . Thus, trade happens if and only if max {v1, v2} >

√
10−2
3 (see Figures 2c and 2d), granting the seller an expected profit of approximately 0.354.
Two aspects of our construction need probing: Can the seller do better by making some other

type v1 = α′ indifferent between waiting and trading in the first period, where α′ > α or α′ < α.
And, further still, can the seller do better by employing some other pricing mechanism altogether?
Next, we show that the pricing mechanism characterized here is the optimal dynamic contract—the
seller cannot do better, which answers both questions.

Optimal dynamic mechanism. To establish the global optimality of our pricing mechanism,
we state the general two-period dynamic mechanism design problem, invoke the revelation prin-
ciple, and then solve the problem to show that the optimal allocation is given by q (v1, v2) =

1

(
max {v1, v2} > √

10−2
3

)
.

A direct dynamic mechanism is a pair of an allocation q ∈ {0, 1} and payments (p1, p2). The
buyer reports a value in each period. By the revelation principle there is no loss from looking
only at the set of direct incentive compatible mechanisms where the buyer cannot strictly gain by
misreporting his valuations.

Write v2q (v̂1, v̂2)−p2(v̂1, v̂2) for the buyer’s second period payoff where v̂t is the reported type
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and vt is the true type. This payoff is independent of the true first period value, thus incentives
“on-path” and “off-path” are identical. Keeping this in mind, we shall only consider v̂1 = v1; then
incentive compatibility at t = 2 reads as follows:

U2(v1, v2) := v2q (v1, v2) − p2(v1, v2) = max
v̂2∈[0,1]

v2q (v1, v̂2) − p2(v1, v̂2).

This constraint is quite standard andwell-studied in the staticmechanism design literature (Myerson
[1981]). It can be shown that the above condition is equivalent to v2 7→ U2(v1, v2) being a convex
function with a derivative of q (v1, v2), the latter is termed as the envelope formula

Next, define the buyer’s first period expected payoff from truth-telling asU1(v1) := E [U2(v1, v2)]−
p (v1). Since the second period incentive constraint ensures that the buyer reverts to truth-telling,
the incentive compatibility at t = 1 is the following:

U1(v1) = max
v̂1∈[0,1]

1/2 ×U2(v̂1, v1) + 1/2 ×

∫ 1

0
U2(v̂1, v2)dv2 − p1(v̂1).

Again, the functionU1(v1) is convex with a derivative of 1/2× q (v1, v1). The latter is termed as the
dynamic envelope formula; it gives the following expression for buyer’s payoff:

U1(v1) = U1(0) + 1/2 ×

v1∫
0

q (v, v )dv .

In the first period convexity is necessary but not sufficient for incentive compatibility. To
produce a condition on allocation, subtract U1(v̂1) from each side of the incentive constraint and
substituteU1(.) andU2(v̂1, .) to get:∫ v1

v̂1
q (v, v )dv >

∫ v1

v̂1
q (v̂1, v )dv .

This condition, known as integral monotonicity (Pavan, Segal, and Toikka [2014]), characterizes
incentive compatibility when information arrives gradually.

The next step is to write the seller’s profit as a function of q . Because of linearity, profit is
the difference between surplus and buyer’s expected payoff. Surplus is simply E

[
v2q (v1, v2)

]
, and

buyer’s expected payoff is E [U1(v1)]. We of course require that the buyer cannot be forced to
accept trade, in other words U1(v1) > 0. This pins downs U1(0) = 0, and using integration by
parts the seller’s problem can finally be stated as:

max
q ∈{0,1} E

[
v2q (v1, v2)

]
− 1/2 ×

∫ 1

0
(1 − v )q (v, v )dv .

subject to (i) integral monotonicity and (ii) v2 7→ q (v1, v2) non-decreasing. A graphical illustration
of both global constraints can be seen in Figure 3a. Integral monotonicity demands that average
allocation along the diagonal must be greater than the allocation along its vertical projection, and
second period monotonicity demands that allocation along any vertical line in the unit square
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Figure 3: Optimal dynamic mechanism

should be monotonic.2

It is easy to see that v 7→ q (v, v ) must be non-decreasing, thus there exists a number α such
that q (v, v ) = 1 if and only if v > α. This splits the diagonal in Figure 3b into trade (red-solid)
and no-trade (blue-dashed) regions. We claim that q (v1, v2) = 0 whenever max{v1, v2} < α.

• For v2 < v1 < α, this is implied by (ii): q (v1, v2) 6 q (v1, v1) = 0.

• For v1 < v2 < α, this is implied by (i):
∫ v2
v1

q (v1, v )dv 6
∫ v2
v1

q (v, v )dv = 0.

Graphically, (ii) forces no-trade in the lower triangle, and (i) forces no-trade in the upper triangle
in the unshaded region of Figure 3b. Moreover, having trade whenever max{v1, v2} > α increases
surplus, but keeps the buyer’s payoff at the same level; thus the seller’s profit is bounded above by

E [v2 · 1 (max{v1, v2} > α)] − 1/2 ×

∫ 1

α
(1 − v )dv = 1/2 × α[1 − α] + 1/2 ×

∫ 1

α

3v2

2
dv .

The upper bound ismaximized at α∗ =
√
10−2
3 which yields exactly the same profit as the optimal

pricing strategy described above. Thus, trade everywhere except the lower square of dimension
α is optimal, which is the shaded region of Figure 3b. The optimal allocation rule is given by
q (v1, v2) = 1

(
max {v1, v2} > √

10−2
3

)
. It can be further shown that for the two-period model,

the profit generated by this optimal deterministic contract cannot be improved by randomization.3

Now, we take these insights from the two-period model to a continuous time model with Poisson
arrivals.

2The first-order approach would maximize the objective ignoring (i) and (ii). The solution turns out to be q f oa =
1 (v1 , v2 ∨ v1 = v2 > 1/2), which violates both (i) and (ii).

3The proof of this claim is available from the authors upon request.
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3 Setup

3.1 Primitives

A seller (she) wants to sell one unit of a timed good (or service) to a buyer (he). The good is timed
in the sense that it has a fixed date of consumptionT . Time is continuous and indexed by t ∈ [0,T ].
For simplicity, we assume no discounting, and zero cost of production for the seller. The buyer’s
valuation for the good follows a stationary Markov renewal process: Vt = XNt , where Nt is a
Poisson process with intensity λ and {Xn}NT

n=1 is a sequence of iid samples from a distribution F on
[0, 1] with a well defined density f , which is positive on [0, 1]

Physically, the process works as follows: a valueV0 is drawn at time zero from F . Then at each
instant in time, Vt ∈ [0, 1] is the buyer’s value (or "demand") for the good that he will consume at
date T . The value can either stay the same or change with the arrival of some news. In the latter
case, modeled as the arrival of a Poisson shock, the value is redrawn from the distribution F . If say
two shocks arrive between 0 and T , then the value is redrawn twice. We will write V t or V [0,t ] in
place of the continuous vector (Vs )ts=0, and V [t,T ] for the "future" set of values (Vs )Ts=t . The final
realized value VT is the actual payoff the agent gets from consuming the good.

At the outset, we consider the following pricing instrument: At the start the seller asks the
buyer to make an upfront payment M and offers a menu of time-dependent prices p =

(
pt

)T
t=0.

4

The buyer can either opt out or pay the upfront payment; payment of M grants him the right to
buy the good at any of the future prices. For example, if the buyer decides to purchase the good
at time t , he will make a payment of pt (in addition to M ) to the seller in return for which he is
assured the delivery of the good at time T . We assume that the physical payment and consumption
both happen at T .5 If the buyer does not buy the good till T , there is no trade and the upfront
payment is lost as a sunk cost.

As is standard, this model can be seen as a single seller and single buyer interaction where the
latter’s valuation is drawn from a known distribution, or equivalently, behind the veil of the law
of large numbers, it can also be viewed as a single seller and many buyers interaction where the
distribution determines the size of market demand.

4 A dynamic pricing strategy

For a fixed menu of prices 〈M ,p〉, the buyer’s strategy can be described as an optimal stopping
problem: Modulo the upfront payment, the gain from stopping at time t is described by Gt (v ) :=
E[VT |Vt = v ] − pt . The buyer can always refuse to trade upon stopping, thus the effective gain is
(Gt (v ))+, where a+ = max{0, a}. It is standard practice to formulate the solution to such questions

4A continuous vector of prices till time t is denoted as p t =
(
ps

) t
s=0, and the entire menu of prices is succinctly

expressed as p = pT =
(
pt

)T
t=0. The future set of prices is denoted by p [t,T ] =

(
ps

)T
s=t .

5Since there is no discounting, we could instead assume that that M is paid upfront, pt is paid at time t , and the good
is consumed at time T .
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as a Markov decision problem:

Wt (v ) := sup
τ∈[t,T ]

E
[
(Gτ (Vτ ))+ | Vt = v

]
.

where "sup" is taken over all stopping times larger than t .
Internalizing the optimal response of the buyer, the seller’s problem consists of the choice of

upfront payment M and price path
(
pt

)T
t=0 to maximize her expected profit. Note that, we will

break buyer’s indifference to stopping or not in favor of the seller. This is because the seller can
reduce prices by a small amount and get a unique implementation with profit arbitrarily close to
the optimal one.

For starters, it is intuitive that the buyer’s response should be a threshold strategy: as a function
of the current value Vt and future path of prices p [t,T ] , the buyer devises a threshold αt

(
p [t,T ]) ∈

[0, 1] such that ifVt > αt , buy, else wait. The seller can then optimize over threshold responses. We
show that these thresholds can be derived in closed form, and in fact they have a simple structure.

Theorem 1. There exists α∗ ∈ [0, 1] such that an optimal pricing strategy, 〈M ∗,p∗〉, is as follows:

M ∗ = E
[
(VT − α

∗)+ |V0 = 0
]
, p∗t = α∗ −

(
1 − e−λ(T −t )

) ∫ α∗

0
F (v )dv .

The buyer always pays M ∗ upfront and purchases the good at time t for price p∗t iff Vt > α
∗ > max

s<t
Vs .

Theorem 1 establishes that the optimal pricing strategy and the buyer’s best response to it can
be parametrized by a single variable, viz. the final price of (potential) trade: pT = α; we will term it
the spot price. For any spot price α, the seller will optimally (backward) construct the path of prices
and upfront payment as listed above. The buyer in turn will always make the upfront payment,
and will stop and trade at price pt , the first instant t at which his value is above the threshold α. In
case max

t>0
Vt < α, there is no trade.

The rough intuition for why the threshold reduces to a constant is as follows: Suppose the
threshold is (locally) decreasing. Then the buyer will always prefer to wait and learn his future
valuations before trading. The seller can then increase her profit by flattening the threshold for
those time periods and increase her profit through greater price discrimination. Suppose instead
that the threshold is (locally) increasing. Then, replacing this with an appropriately chosen constant
threshold increases the area of trade, surplus produced from which can be extracted using upfront
payment.

The formal proof presented in the appendix has four steps. The heart of the argument is the
first step which relabels prices as a function of time dependent thresholds. Exploiting the intuition
stated above, the thresholds are then replaced by a constant α. The second step argues the upfront
payment must exactly equal the expected utility of the lowest initial type,V0 = 0. These properties
are then used to construct an upper bound on the seller’s profit. The third step shows that 〈M ∗,p∗〉
defined above achieve this upper bound. Finally, the fourth step simplifies the seller’s expected
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profit generated from these prices to be:

Π(α) := α [1 − F (α)]︸          ︷︷          ︸
spot pricing

+
(
1 − e−λT

) ∫ 1

α

[1 − F (v )] dv︸                                  ︷︷                                  ︸
upfront payment

+
(
1 − e−λ [1−F (α)]T

) ∫ α

0
vdF (v )︸                                    ︷︷                                    ︸

dynamic market segmentation

. (?)

Equation (?) parallels a similar expression we derived for the two-period model. It shows that the
seller’s optimization problem has been reduced to choice of a single variable: a threshold given by
α∗ := arg max

α∈[0,1]
Π(α).6 We now provide a classical price-theoretic explanation of how each of three

individual components in the equation stack up to constitute the seller’s profit.

5 The simple economics of dynamic pricing7

Suppose the seller ignores dynamics and offers the good for a spot price α. The buyer will buy
the good if his final value of consumption is larger than α, that is VT > α. Note that from an ex
ante perspective VT is (unconditionally) distributed according to F , thus trade will happen with
the following probability: P(VT > α) = 1 − F (α).

We will regard this as the buyer’s inverse demand function: D (p) := 1 − F (p), where D (p)

is quantity demanded at price p.8 Figure 4 depicts the buyer’s demand function with "quantity"
on the x-axis and price on the y-axis. In Figure 4a, for a fixed spot price α, the red area captures
the seller’s expected profit (also known as producer surplus, PS), the blue area captures the buyer’s
expected payoff (consumer surplus, CS) and the rest unshaded part is the deadweight loss (DWL)
due to no trade, whenever VT < α. The seller’s expected payoff from this static pricing strategy is
α[1 − F (α)], the first term of Equation (?).9

Note that even the buyer with the lowest initial value, V0 = 0, has a positive probability of
ending with a final value, VT , greater than α. This leaves a baseline positive expected surplus for
all types of buyers. As a first step towards dynamic pricing, the seller can extract this consumer
surplus through an upfront fee:

M (α) := E
[
(VT − α)+ |V0 = 0

]
=

(
1 − e−λT

) ∫ 1

α

[1 − F (v )] dv .

that is the second term in Equation (?).
The inverse demand function conditional on V0 = 0 is D0(p) := P

(
VT > p |V0 = 0

)
, it is the

blue curve in Figure 4b. The area under D0 above the price line α, viz. the consumer surplus
corresponding to D0, is given by M (α). The original consumer surplus is now split into two parts:

6In Corollary 1 we show that α∗ is unique under standard restrictions on value distribution.
7The term "simple economics" is a homage to Bulow and Roberts [1989] which provides a price theoretic interpre-

tation for Myerson [1981]’s optimal auction problem.
8We can also think of the seller facing a population of buyers in which case D (p) is the size of the market at price p.
9Since the cost of production for the seller is assumed to be zero, trade is always efficient. As a consequence, the

entire area of no trade forms the deadweight loss. Also, linearity of D is assumed for simplicity of exposition, this would
of course be exact if F is uniform.
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Figure 4: Decomposition of total surplus from trade into CS, PS and DWL

M (α) and the rest.10 By construction, the seller extracts M (α) from the buyer without distorting
his participation decision at time t = 0. Therefore, in Figure 4b, M (α) represents the transfer of
an erstwhile component of consumer surplus to what is now a part of the producer surplus.

A natural next question is this: can the seller sell the good before the terminal date, thus decrease
DWL, and increase her profit? One strategy is to offer lower prices initially to induce the buyer
with high enough values, say Vt > αt , to purchase the good early. The optimal price sequence is
pinned down by a time independent threshold: make all buyer types Vt > α indifferent between
making a purchase at t and waiting until the terminal date. Thus, trade take place early whenever
max
t>0

Vt > α.

In this final step, increased region of trade moves some part of the erstwhile DWL to the pro-
ducer surplus. The dynamic segmentation of the market can be visualized in Figure 4c; the blue
curved line depicts a new demand function given by Dm (p) = P

(
max
t ≥0

Vt ≥ p
)
.11,12 The change in

10It is easy to see that P
(
VT > α |V0 = 0

)
< P

(
VT > α

)
= 1− F (α), hence the new conditional demand function lies

below the old unconditional one.
11Dm (p) lies above the static demand curve D (p), since Dm (p) := 1 − F (p)e−λ [1−F (p)]T > 1 − F (p) = D (p).
12Note that maximal ex post surplus is still VT and not max

t>0
Vt .
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DWL is as follows:

"extra" = E
[
VT · 1

(
VT < α 6 max

t>0
Vt

)]

︸                                  ︷︷                                  ︸
difference in static and dynamic DWL

= P
(
max
t>0

Vt > α |VT < α
)
· E

[
VT 1

(
VT < α

)]︸                 ︷︷                 ︸
static DWL

.

Here ζ := P
(
max
t>0

Vt > α |VT < α
)
measures the fraction of trades that can be "recovered" by using

dynamic pricing when the final spot price pT is fixed at α. Using Bayes rule it can be shown that
ζ = Dm (α)−D (α)

1−D (α) , so the area [ζ · static DWL], depicted in Figure 4c as "extra", is transferred from
DWL to PS due to dynamic pricing.13 The magnitude of this added profit for the seller is the third
term in Equation (?).

6 Comparative statics

In this section, we discuss the structure of the threshold α∗, and associatedly the comparative statics
of the dynamic pricing mechanism with respect to the primitives of the model.

From Equation (?), the first-order condition determining α∗ is given by:

1 − F (α)
α f (α)

= eλT ·F (α)
(
1 + λT ·

∫ α

0

vdF (v )
α

)
.

This equation only admits interior solutions, and the solution is unique under standard assumptions
on the distribution of valuations, for example, monotonicity of the inverse hazard ratio. Moreover,
it can be noted that time T and rate of transition λ enter multiplicatively. Thus, what matters for
comparative statics is the normalized time λT .

Corollary 1. The optimal threshold satisfies the following properties:

(a) α∗ ∈ (0, 1) and it is unique whenever v 7→ f (v )
1−F (v ) or v 7→ v f (v ) are nondecreasing.

(b) α∗ converges to the optimal static spot price as λT → 0.

(c) α∗ is non-increasing in λT with lim
λT→∞

α∗ = 0.

Part (b) states that as T → 0, i.e. the time horizon shrinks, or as λ → 0, i.e. values become
perfectly persistent, the optimal contract coverages to its static benchmark. Part (c) says that α∗ is
positive and strictly decreasing in normalized time. As the date of consumption of the object goes
further into the future, the (ex ante) probability of trade goes up. In particular, in the limit the
good is always sold: when T → ∞ the initial informational advantage of the agent goes to zero and
when λ → ∞ the stochastic process becomes iid. In both cases the efficient contract is optimal and
seller can extract all surplus as profit using the upfront fee.

13ζ = P

(
max
t>0

Vt > α
�����
VT < α

)
=
P

(
VT <α6max

t>0
Vt

)
P(VT <α) =

Dm (α)−D (α)
1−D (α) .
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What about prices? The model predicts that the optimal price schedule is increasing over time.
Theorem 1 states that optimal prices satisfy the following identity:

p∗T − p∗t =
(
1 − e−λ(T −t )

) ∫ α∗

0
F (v )dv .

It can be checked that this difference between p∗T and p∗t is strictly decreasing in time. Thus, prices
for trade increase steadily from some initial value p∗0 to the final spot price p∗T .

Corollary 2. p∗T − p∗t is strictly decreasing in t .

Such pricing schemes have been refereed to in the literature as advance purchase discounts (see
Dana Jr. [1998]). Typically these feature two types of buyers with idiosyncratic uncertainty in
demand. Low valued buyers with higher uncertainty buy early and high valued buyers with lower
uncertainty buy later. Here, in contrast, we have a continuous price path with a steadily declining
discount. Those whose value estimate is above α∗ early buy at a lower price, and those whose value
estimate is below α∗ initially but goes above the threshold later, buy then at a higher price.14

7 Optimality: a mechanism design approach

In this section, we establish that the seller cannot achieve a profit higher than Π(α∗) through stan-
dard pricing mechanisms. More specifically, it is shown that the optimal deterministic dynamic
mechanism implements the same allocation as before: trade at time t wheneverVt > α

∗ > max
s∈[0,t )

Vs ,

where α∗ ∈ [0, 1] is threshold determined in Theorem 1.
Invoking the revelation principle, it is without loss of generality to focus on direct mechanisms.

A dynamic (direct) mechanism is a history-dependent pair 〈Q,P〉 such that Q ∈ {0, 1} is the allo-
cation rule and Pt ∈ R is the cumulative payment at time t .15 The agent reports his "type" at each
"period"; that is, his strategy prescribes a report V̂t ∈ [0, 1] at each instance of time.16

A mechanism is incentive compatible if there is no reporting strategy which gives the buyer a
strictly higher (expected) payoff than truthtelling:

E

[
VTQ

(
V T

)
−

∫ T

0
dPt

(
V t

) ]
> E

[
VTQ

(
V̂ T

)
−

∫ T

0
dPt

(
V̂ t

) ]
∀V̂ T .

Fix a history V̂ [0,t ) and Vt = v ; define buyer’s continuation payoff at this historyUt
(
v |V̂ [0,t )

)
as

Ut
(
v |V̂ [0,t )

)
:= E

[
VTQ

(
V̂ [0,t ),V [t,T ]

)
−

∫ T

t
dPs

(
V̂ [0,t ),V [t,s ]

) ���Vt = v
]
.

14For example, die hard fans of an artist know early that they want to go to her concert, and new fans may decide
to buy the ticket closer to the date when late information peaks their interest. A die hard fan may receive some news
later that he cannot be in town on the day of the concert, but it is a trade-off worth making given the advance purchase
discount and current value estimate.

15We require: (i) Q is measurable with respect to the sigma algebra generated by V T , ( ii) Pt is cadlag, adapted to the
natural filtration and uniformly bounded.

16The process of reports is cadlag, adapted to the natural filtration, and almost surely constant with a finite number
of jumps in any closed interval. Otherwise, the seller would detect a deviation.
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Note that the buyer who misreported V̂ [0,t ) in the past faces exactly the same incentive problem
at time t as the buyer who happened to report V̂ [0,t ) truthfully, that is the sequential rationality
constraint is valid both "on and off path". Therefore, incentive compatibility can be restated as the
requirement that for almost every V [0,t ), Vt = v and t ,

Ut
(
v |V [0,t )

)
> E

[
VTQ

(
V [0,t ), V̂ [t,T ]

)
−

∫ T

t
dPs

(
V [0,t ), V̂ [t,s ]

) ���Vt = v
]
∀V̂ [t,T ] .

Let v [t,T ] denote the history where there are no Poisson arrivals and the type stays constant at v
from t till T . The following lemma characterizes incentive compatibility.

Lemma 1. A mechanism 〈Q, P 〉 is incentive compatible if and only if (Env ), (C ) and (I M ) hold for
almost all V [0,t ) and t :

Ut
(
v |V [0,t )

)
= Ut

(
0|V [0,t )

)
+ e−λ(T −t )

∫ v

0
Q

(
V [0,t ),w [t,T ]

)
dw a.e. v ; (Env)

v 7→ Q
(
V [0,t ), v [t,T ]

)
is non-decreasing a.e. v ; (C)∫ v

v̂
Q

(
V [0,t ),w [t,T ]

)
dw >

∫ v

v̂
Q

(
V [0,t ), v̂ [t,t+ε),w [t+ε,T ]

)
dw a.e. v, v̂ ∀ε 6 T − t . (IM)

Lemma 1 is a dynamic analog of the Myersonian characterization of incentive compatibility in
static mechanism design (see Börgers [2015]). It is a counterpart to similar results established in dis-
crete time by Pavan, Segal, and Toikka [2014] and Battaglini and Lamba [2019], and in continuous
time with Brownian shocks by Bergemann and Strack [2015]. It pins down the space of allocations
that can be implemented by some pricing strategy. And it expresses the buyer’s (expected) payoffs
as a function of the allocation rule, up to a constant. Equation (Env) represents the dynamic analog
of the envelope formula; Equation (C) represents a monotonicity condition for constant histories,
when there is no Poisson arrival after date t ; and Equation (IM) is the integral monotonicity con-
straint that captures "global incentives" arising out of the multidimensionality of types (Rochet
[1987]).

The next natural restriction is individual rationality. Formally, a mechanism 〈Q,P〉 is individ-
ually rational if for almost every V [0,t ), Vt = v and t

Ut
(
v |V [0,t )

)
> 0.

So the buyer cannot be forced to continue the contract when it is not in his own interest. In our
quasi-linear setting with no (or equal) discounting, individual rationality binds only at the initial
date and can be ignored thereafter. A mechanism that is incentive compatible and individually
rational will be termed implementable.

Recall that Π(α∗) is the profit achieved by the optimal pricing mechanism (Theorem 1 and
Equation (?)). The following result states the global optimality of our pricing mechanism.

Theorem 2. The seller’s profit is at most Π(α∗) for any implementable mechanism.

Start with a constant history v [0,T ] , where V0 = v and there are no Poisson arrivals. By Equa-
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tion (C), there exists some threshold α such that trade takes place for v > α and not for v < α. If
we ignore Equation (IM), then using the envelope formula, the so-called first-order contract opti-
mal produces trade whenever there is at least one arrival, and when the constant history is above
α. The only no-trade region is along the constant history below α. The optimal choice of α then
pins down the first-order optimum. This contract is obviously not incentive compatible.17

In order to preserve incentive compatibility, the first-order optimal contract needs to be ironed
along the following type of history: Consider V [0,T ] such that Vt < α for all t . Since there is
no trade for the history α [0,T ] , in order to satisfy (IM), there must be no trade for these (point-
wise) lower histories as well. Analogous to the two period example (see Figures 2c and 2d), in the
"continuous hypercube" of all possible evolutions of valuations, an incentive compatible contract
produces no trade in the bottom hypercube with edges of length α. In the remaining histories
V [0,T ] , where there exists t such that Vt > α, the seller always wants trade, since the shadow price
of incentives here is zero, and the surplus from trade can be extracted by binding the individual
rationality constraint at time 0. Thus, for the optimal value of the threshold α∗, the allocation rule
splits all histories into two classes, no-trade: max

06s6T
Vt < α∗, and trade: max

06s6T
Vt > α

∗.

As a final thought, there are three levels of private information with the buyer: What is the
initial type. whether there is a Poisson arrival, and in case of an arrival, what is the new type. If the
second piece, the Poisson arrival, is publicly observed, then the local approach delivers the optimal
contract. Information rent associated with the privateness of the initial draw is pinned down by
the allocation along the constant history; captured by Equation (Env) at t = 0. Since the draw of
the new type upon an arrival is independent, and the news of arrival is now public, the buyer has
no informational advantage over the seller beyond the initial type, hence no incentive constraints
bind at the optimum except those captured by the envelope formula. This is the intuition for
why dynamics can be posed as being "irrelevant" under the assumption of sufficiency of the local
approach (see Esö and Szentes [2017]), since only initial private information matters for dynamic
information rents. We go beyond these class of models to demonstrate the relevance of dynamic
interaction in mechanism design.

8 Final remarks

The model can be extended to incorporate a linear cost of production for the seller, and a com-
mon discount factor for the two players. The model studied by Deb [2014] in which the number
of Poisson arrivals is restricted to be one can also be completely characterized using the pricing
approach we explored here. Going beyond to more general stochastic processes may require a com-
bination of menu choice and time dependent pricing. Exploring improvement in profits offered by
randomization in dynamic pricing is also an open question.18

The largely normative exercise here is silent of the feasibility of an upfront payment in the

17Formally, the first-order optimal contract takes the form: Q (v [0,T ] ) = 1 if v > α and Q (v [0,T ] ) = 0 for v < α, and
Q (V [0,T ] ) = 1 if Vs , Vt for any s , t . The seller then optimizes over α.

18Details on the model with a single Poisson arrival, and improvements offered by randomization are available from
the authors upon request.
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pricing schedule. If it is not practical, the model demands the imposition of a financial or regulatory
constraint. On the other hand, it maybe approximated by other instruments such as refundable
prices or small but recurring membership fees.

9 Appendix

9.1 Proofs for the pricing mechanism 〈M ,p〉

Proof of Theorem 1. Recollect that the gains process is given by Gt (v ) = E[VT |Vt = v ] − pt . The
buyer can always refuse to trade upon stopping, thus the effective gain is (Gt (v ))+, where a+ =
max{0, a}. And, the value function of the buyerWt at any time t is then given by

Wt (v ) = sup
τ∈[t,T ]

E
[
(Gτ (Vτ ))+ | Vt = v

]
.

where "sup" is taken over all stopping times larger than t .
Since the gain process is Markov in time and current valuation, there is no loss from using

Markov strategies. It is easy to see that a strategy corresponding toVt = v can be written recursively
using only constant paths:

stop and trade/not trade at st (v ) ∈ [t,T ] whenever there is no arrival in [t, st (v )], and

if there is an arrival at r ∈ [t, st (v )], then continue with a strategy sr (v ′) corresponding to Vr = v ′.

Optimizing over such recursive strategies is a much simpler task. In particular, the buyer’s value
function admits a natural representation where the buyer is choosing the best (deterministic) time
to stop along the persistent path, i.e. before an arrival:

Wt (v ) = sup
s∈[t,T ]

e−λ(s−t ) [G s (v )]+ + λ
∫ s

t
e−λ(r−t )E [Wr (Vr )] dr .

We can re-write this equation to explicitly accounting for two possible cases: first when the buyer
stops at the the best possible time along the constant path, and second when he does not stop at all
along the constant path:

Wt (v ) = max




sup
s∈[t,T ]

e−λ(s−t )G s (v ) + λ
∫ s

t
e−λ(r−t )E [Wr (Vr )] dr︸                                                        ︷︷                                                        ︸

trade at s ∈ [t,T ]

, λ

∫ T

t
e−λ(r−t )E [Wr (Vr )] dr︸                                 ︷︷                                 ︸
no trade in [t,T ]




.

(†)

Note that (·)+ is omitted fromGt in the above equation. The reason is that the continuation value,
Wt , is always non-negative, therefore it is suboptimal to stop and refuse to trade before the terminal
date. The first term in Equation (†) is the value from having trade along the constant path in [t,T ],
whereas the latter corresponds to no trade.
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Equation (†) defines the buyer’s decision problem after he pays the upfront fee. At the initial
date, the buyer’s type V0 decides either to pay the upfront fee and receiveW0(V0) − M or opt out.

We prove this theorem in four steps. First, we find an upper bound on the seller’s expected profit
as a function of the buyer’s expected payoff: in Step I- we solve for the buyer’s value function, and
in Step II- we consider the buyer’s incentives to make the upfront payment. Then, we show that
this upper bound is achieved by a pricing scheme in a specific class. Finally, we derive the optimal
pricing strategy and exhibit the closed form of α∗.

Step I. Fix the pricing scheme 〈M ,p〉 and letWt (v ) be the buyer’s value function as it is defined
in (†). The key to our construction is to relabel the prices. Specifically, define a number αt by the
following equation:

pt = e−λ(T −t )αt +
(
1 − e−λ(T −t )

) ∫ 1

0
wdF (w ) −Wt (0).

so that the gains process can then be rewritten as

Gt (v ) = E[VT |Vt = v ] − pt =

= e−λ(T −t )v +
(
1 − e−λ(T −t )

) ∫ 1

0
wdF (w ) − pt =

= e−λ(T −t ) (v − αt ) +Wt (0).

Now, by definition, the value function must dominate the gain process:

Wt (0) > Gt (0) = −e−λ(T −t )αt +Wt (0).

Therefore, the threshold must be nonnegative, that is αt > 0.
In what follows we show how to solve for the spreadWt (v )−Wt (0) as a function of the thresh-

olds. There are two cases to consider. First, suppose that the buyer with the lowest valuation prefers
to trade, that is the max in Equation (†) is achieved at the first term:

Wt (0) = sup
s∈[t,T ]

e−λ(s−t )G s (0) + λ
∫ s

t
e−λ(r−t )E [Wr (Vr )] dr > λ

∫ T

t
e−λ(r−t )E [Wr (Vr )] dr .

Substitute forG s (v ) andG s (0) to get e−λ(s−t ) [G s (v ) −G s (0)] = e−λ(T −t )v for all s ∈ [t,T ], which
is independent of s . Thus, both buyers of types v and 0 at time t follow the same strategy of when
to stop and trade. This gives us the following expression for the spread:

Wt (v ) −Wt (0) = e−λ(T −t )v .

Next, consider the case when trade is strictly dominated for the buyer with the lowest valuation.
Formally, there exists ε > 0 such that

Wt (0) = λ
∫ T

t
e−λ(r−t )E [Wr (Vr )] dr > ε+e−λ(s−t )G s (0)+λ

∫ s

t
e−λ(r−t )E [Wr (Vr )] dr ∀s ∈ [t,T ].

17

Electronic copy available at: https://ssrn.com/abstract=3491015



Substituting for the gain process, we have

λ

∫ T

t
e−λ(r−t )E [Wr (Vr )] dr > ε−e−λ(T −t )αs+e−λ(s−t )Ws (0)+λ

∫ s

t
e−λ(r−t )E [Wr (Vr )] dr ∀s ∈ [t,T ].

By definition, the value functionWs (0) at any moment s ∈ [t,T ] is weakly higher than the value
of no trade λ

∫ T
s e−λ(r−t )E [Wr (Vr )] dr , thus

λ

∫ T

t
e−λ(r−t )E [Wr (Vr )] dr > ε − e−λ(T −t )αs + λ

∫ T

t
e−λ(r−t )E [Wr (Vr )] dr ∀s ∈ [t,T ].

Conclude that inf
s>t

αs > ε > 0, which implies thatWs (0) > ε + lim
ε ↓0

sup
r ∈[s,s+ε ]

Gr (0) for all s ∈ [t,T ].

It follows that the buyer with the lowest valuation prefers to continue until the final date. Then,
Wt (0) can be rewritten as

Wt (0) = e−λ(s−t )Ws (0) +
∫ s

t
λe−λ(r−t )E [Wr (Vr )] dr , ∀s ∈ [t,T ].

Substitute this to (?) for v > 0 and take the sup to obtain the following estimate:

Wt (v ) −Wt (0) = e−λ(T −t )
(
v − inf

s>t
αs

)+
.

Finally, note that if infs>t αs = 0, then trade cannot be strictly dominated, thusWt (v )−Wt (0) =

e−λ(T −t )v . The above expression captures both possible cases simultaneously. Going forward, de-
fine a unique threshold α to the inf of all thresholds: α := inf

t>0
αt .

Step II. Next, we consider the buyer’s decision to make the upfront payment. It is convenient
to reparametrize M as M =W0(0)+ e−λT β for β ∈ R, where note thatW0(0) is the expected utility
of the lowest value buyer at time 0. It is immediately clear that β < 0 leaves surplus on the table
for the buyer without affecting any self-selection constraints. So, it suffices to look at β > 0. We
separately study β = 0 and β > 0.

Consider β = 0. In this case, the buyer will agree to make the upfront payment irrespective of
V0. Recall thatWt (v ) −Wt (0) = e−λ(T −t ) (v − inf

s>t
αs

)+. Thus, the buyer with value Vt = v will
agree to make a purchase at t or a moment later only ifWt (v ) = lim

ε ↓0
sup

s∈[t,t+ε ]
G s (v ). Equivalently:

v > inf
s>t

αs = lim
ε ↓0

inf
s∈[t,t+ε ]

αs . In particular, note that there is no trade whenever max
t>0

Vt < α.

Now, the buyer’s expected net payoff is E [W0(V0) −W0(0)] = e−λT E
[
(V0 − α)+

]
. What about

total surplus? Since, α = inf
t>0

αt , the total surplus is bounded above by E[VT · 1
(
max
t>0

Vt > α
)
].

Combining these two we obtain the following upper bound on seller’s expected profit:

Π(α) = E[VT · 1
(
max
t>0

Vt > α
)
]︸                          ︷︷                          ︸

maximal surplus

− e−λT E
[
(V0 − α)+

]︸                  ︷︷                  ︸
buyer’s expected payoff

.

Next, let β > 0. It is easy to see that the buyer will agree to pay the upfront payment only if
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V0 > β + α, therefore the seller’s profit is as at most

E [VT · 1(V0 > β + α)]︸                         ︷︷                         ︸
maximal surplus

− e−λT E
[
(V0 − β − α)+

]︸                         ︷︷                         ︸
buyer’s expected payoff

.

The reader can verify that this is at most Π(α + β).

Step III. In this step, we show that for any α > 0 there is a pricing strategy that achieves the
upper bound Π(α). It is without loss to assume that α 6 1, otherwise Π(α) = 0 and the problem
becomes trivial. Define 〈M ,p〉 by

M = E
[
(VT − α)+ |V0 = 0

]
, pt = α −

(
1 − e−λ(T −t )

) ∫ α

0
F (v )dv .

Substitute pt into the gain process to get:

pt = e−λ(T −t )αt +
(
1 − e−λ(T −t )

) ∫ 1

0
wdF (w ) −Wt (0).

so that the gains process can then be rewritten as

Gt (v ) = E[VT |Vt = v ] − pt =

= e−λ(T −t ) (v − α) +
(
1 − e−λ(T −t )

) ∫ 1

α

[1 − F (w )] dw 6

6 e−λ(T −t ) (v − α)+ +
(
1 − e−λ(T −t )

) ∫ 1

α

[1 − F (w )] dw =

= E
[
(VT − α)+ |Vt = v

]
.

Note that E [(VT − α)+ |Vt ] is the martingale that dominates the gains process. On the other
hand, E [(VT − α)+ |Vt ] is also the value from stopping only at the final date whenever VT > α =

pT . By definition, the value function,Wt (Vt ), is the smallest supermartingale dominating the gain
process (Peskir and Shiryaev [2006]), thus

Wt (v ) = E
[
(VT − α)+ |Vt = v

]
.

Clearly,W0(v ) > W0(0) = M , so the buyer is incentivized to always make the upfront payment.
Moreover, the value Wt (v ) can be achieved by the smallest stopping time (Peskir and Shiryaev
[2006]): stop at the first instance at whichWt (v ) = Gt (v ), that is Vt > α > max

s<t
Vs . Conclude

that trade happens whenever max
t>0

Vt > α, so the seller can obtain the profit of Π(α) by using the

aforementioned pricing scheme.

Step IV. To conclude the proof, we derive the threshold α∗ which maximizes Π(α). First of all,
recollect that the buyer’s expected payoff is simply e−λT

∫ 1
α
[1 − F (v )] dv

To compute the expected gains from trade, we need to introduce several auxiliary objects. Let
T̃ be the time of the latest arrival in [0,T ]. This is a random variable distributed on [0,T ] with a
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mass point at t = 0:

P
(
T̃ 6 t

)
= e−λT +

∫ t

0
λe−λ(T −s)ds .

Next, denote the cdf of max
s≤t

Vs by F̂t (v ) := F (v )e−λ [1−F (v )]t . It is easy to see that the expected

gains from trade conditional on T̃ = 0 is
∫ 1

α
vdF (v ), and conditional on some T̃ , 0 is:

E[VT 1
(
max
t>0

Vt > α
)
|T̃ ] = F̂T̃ (α)

∫ 1

α
vdF (v ) +

[
1 − F̂T̃ (α)

] ∫ 1

0
vdF (v ).

By the law of iterated expectations:

E
[
E

[
VT 1

(
max
t>0

Vt > α
)
|T̃

] ]
=

∫ T

0

[
F̂T̃ (α)

∫ 1

α
vdF (v ) +

[
1 − F̂T̃ (α)

] ∫ 1

0
vdF (v )

]
λe−λ(T −T̃ )dT̃ +

+e−λT
∫ 1

α
vdF (v ) = e−λ [1−F (α)T ]

∫ 1

α
vdF (v ) +

(
1 − e−λ [1−F (α)]T

) ∫ 1

0
vdF (v ).

After some rearrangements, the seller’s profit can be expressed as in Equation (?):

Π(α) = e−λT α [1 − F (α)] +
(
1 − e−λT

) ∫ 1

α
vdF (v ) +

(
1 − e−λ [1−F (α)]T

) ∫ α

0
vdF (v ).

The optimal threshold α∗ solves max
α∈[0,1]

Π(α). The first-order condition for α∗ is given by

1 − F (α∗)
α∗ f (α∗)

= eλT ·F (α∗)
(
1 + λT ·

∫ α∗

0

vdF (v )
α∗

)
.

Corollary 1 proves that the optimal threshold α∗ is well-defined, moreover it is unique under stan-
dard monotonicity assumptions. �

Proof of Corollary 1.
Parts (a), (b) Recall that the first-order condition can be written as

1 − F (α)
α f (α)

= eλT ·F (α)
(
1 + λT ·

∫ α

0

vdF (v )
α

)
.

Clearly, the left hand side diverges to infinity, whereas the right hand side converges to zero as
α → 0. On the other hand, the left hand side converges to zero, whereas the left hands goes to
a strictly positive number as α → 1. Conclude that the optimal threshold is characterized by the
first-order condition, thus it must lie within (0, 1).

Next, we show that the threshold is unique when v 7→ v f (v ) is non-decreasing. Note that the
left hand side is strictly decreasing in α, we claim that the right hand side is strictly increasing. To
see it, differentiate

∫ α

0 vdF (v )/α with respect to α:

d
dα

∫ α

0

vdF (v )
α

= f (α) −

∫ α

0 v f (v )dv
α2 =

∫ α

0

v
α2 d (v f (v )) > 0
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where we used integration by parts to obtain the last expression. Since eλT ·F (α) is strictly increasing,
the whole right hand side is strictly increasing. By the mean value theorem, there exists unique α∗

satisfying the first order condition.
Before showing that the threshold is unique when v 7→ 1−F (v )

f (v ) is non-increasing, we need to
establish Part (b). The equation that defines the static threshold, say α̂, is

1 − F (α)
α f (α)

= 1 6 eλT ·F (α)
(
1 + λT ·

∫ α

0

vdF (v )
α

)
with equality if and only if λT = 0. Specifically, this arguments proves that α∗ converges to α̂ as
λT → 0.

Now, suppose that the inverse hazard ratio is non-increasing, then the static fixed price, say α̂,
is uniquely pinned down as an intersection of two monotone functions, namely 1−F (α)

f (α) and α. It
follows that α∗ must be less than the static optimal fixed price, because

α 6 αeλT ·F (α)
(
1 + λT ·

∫ α

0

vdF (v )
α

)
.

We shall show that v 7→ v f (v ) is non-decreasing on [0, α̂] given the monotone inverse hazard rate,
then uniqueness of α∗ will follow from the argument above. Take β 6 α 6 α̂. By monotonicity
of the inverse hazard ratio, d

dv (v [1 − F (v )]) > 0 for v 6 α̂, thus β [1 − F (β)] 6 α[1 − F (α)] and

α

β
>

1 − F (β)
1 − F (α)

>
f (β)
f (α)

Conclude that α f (α) > β f (β).

Part (c). It remains to show that α∗ is strictly decreasing in λT . By the way of contradiction,
assume that α∗1 > α∗2 are the optimal thresholds for (λ1,T1) and (λ2,T2) with λ1T1 < λ2T2. Observe
that the seller’s profit can be rewritten in an integral form as it follows:

Π(α) = e−λT
∫ 1

α

[
eλT ·F (v )

(
v + λT

∫ v

0
wdF (w )

)
f (v ) − [1 − F (v )]

]
dv .

Then, ∫ α∗j

α∗i

[
eλiTi ·F (v )

(
v + λiTi

∫ v

0
wdF (w )

)
f (v ) − [1 − F (v )]

]
dv > 0 i, j = 1, 2.

Add up two inequalities for i = 1, j = 2 and i = 2, j = 1 to obtain that∫ α∗2

α∗1

eλ1T1 ·F (v )
(
v + λ1T1

∫ v

0
wdF (w )

)
f (v )dv >

∫ α∗2

α∗1

eλ2T2 ·F (v )
(
v + λ1T1

∫ v

0
wdF (w )

)
f (v )dv,

which is a clear contradiction.
Since α∗ is non-increasing in λT , it must converge as λT → ∞. Clearly, it cannot converge to

a strictly positive number, because it will violate the first-order condition for sufficiently large λT .
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�

9.2 Proofs for the general dynamic mechanism design problem

Proof of Lemma 1. By the standard dynamic programming arguments, incentive compatibility can
be rewritten using the one-shot deviation principle where the buyer withVt = v chooses a constant
misreport v̂ which he will follow for ε > 0 or until the first arrival. In other words, there is no loss
to look at the following family of deviations parametrized by a length of time ε > 0:

• Vt = v misreports v̂ , v and continues to misreport until min
{
t + ε,T

}
,

• the buyer switches to truth-telling at t + ε if it is lower than T or right after the first arrival.

We first consider ε > T − t that delivers two necessary conditions, namely (Env) and (IM). Fix
V [0,t ), Vt = v , then the deviation to v̂ , v is unprofitable for large ε if

Ut
(
v |V [0,t )

)
= e−λ(T −t )


vQ

(
V [0,t ), v [t,T ]

)
−

∫ T

t
dPs

(
V [0,t ), v [t,s ]

)
+

∫ T

t
λe−λ(s−t )E

[
Us

(
Vs |V [0,t ), v [t,s)

)]
ds >

> e−λ(T −t )

vQ

(
V [0,t ), v̂ [t,T ]

)
−

∫ T

t
dPs

(
V [0,t ), v̂ [t,s ]

)
+

∫ T

t
λe−λ(s−t )E

[
Us

(
Vs |V [0,t ), v̂ [t,s)

)]
ds

where the first term captures the case of no arrival until T , whereas the latter refers to the case of
an earlier arrival. SubtractUt

(
v̂ |V [0,t )

)
from both sides to obtain the following:

Ut
(
v |V [0,t )

)
−Ut

(
v̂ |V [0,t )

)
> (v − v̂ )e−λ(T −t )Q

(
V [0,t ), v̂ [t,T ]

)
.

The standard envelope argument implies that Ut
(
·|V [0,t )

)
is convex, thus almost everywhere dif-

ferentiable with the derivative given by e−λ(T −t )Q
(
V [0,T ), v [t,T ]

)
. Note that (Env) can be obtained

by integrating this derivative from 0 to v . Moreover, convexity ofUt
(
·|V [0,t )

)
is equivalent to (C).

Next, we look at small ε > 0. Again, fixingV [0,t ),Vt = v , the deviation to v̂ , v is unprofitable
for ε 6 T − t when

Ut
(
v |V [0,t )

)
= e−λεUt+ε

(
v |V [0,t ), v [t,t+ε)

)
+

∫ t+ε

t
λe−λ(s−t )E

[
Us

(
Vs |V [0,t ), v [t,s)

)]
ds >

> e−λεUt+ε
(
v |V [0,t ), v̂ [t,t+ε)

)
+

∫ t+ε

t
λe−λ(s−t )E

[
Us

(
Vs |V [0,t ), v̂ [t,s)

)]
ds .

where the first term captures the case of no arrival until t + ε, whereas the latter refers to the case
of an earlier arrival. SubtractUt

(
v̂ |V [0,t )

)
from both sides to obtain the following expression:

Ut
(
v |V [0,t )

)
−Ut

(
v̂ |V [0,t )

)
> e−λε

[
Ut+ε

(
v |V [0,t ), v̂ [t,t+ε)

)
−Ut+ε

(
v̂ |V [0,t ), v̂ [t,t+ε)

)]
.

Using (Env), rewrite this as∫ v

v̂
Q

(
V [0,t ),w [t,T ]

)
dw > e−λε

∫ v

v̂
Q

(
V [0,t ), v̂ [t,t+ε),w [t+ε,T ]

)
dw .
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Clearly, if there is no profitable deviation for ε > 0, then all deviations are deterred for ε′ ∈ (ε,T −t ]
as well. Combining this observation with the above expression yields (IM).

To sum up, we described the necessary and sufficient conditions to deter any deviation at time
t after observing V [0,t ) and Vt = v . An incentive compatible mechanism must satisfy these only
almost everywhere, though it is without loss to ask (Env), (C) and (IM) to hold pointwise. �

Proof of Theorem 2. Take any incentive compatible mechanism 〈Q,P〉. By Lemma 1, this mecha-
nism must satisfy (C) at the initial date:

v 7→ Q
(
v [0,T ]

)
is non-decreasing.

Since Q ∈ {0, 1}, there exists α ∈ [0, 1] such that

Q
(
v [0,T ]

)
=




1 v > α,

0 v < α.

We next derive an upper bound on seller’s profit as a function α and show that it is less than
Π(α∗). First of all, write the seller’s expected profit as a difference between the total surplus and
the buyer’s ex ante payoff, that is

E
[
VTQ (V T )

]
− E [U0(V0)] .

Using Lemma 1, specifically (Env), solve for the buyer’s expected payoff as a function of payoff to
V0 = 0 and α:

E [U0(V0)] = U0(0) + e−λT
∫ 1

0
[1 − F (v )]Q

(
v [0,T ]

)
dv > e−λT

∫ 1

α

[1 − F (v )] dv .

The inequality follows from individual rationality of the buyer with V0 = 0.
Now, we bound the surplus by showing that there is no trade whenever max

t>0
Vt < α, that is

Q
(
V T

)
= 0. To begin, recall that any history can be represented as a finite sequence {(τn,Xn)}NT

n=0
where τn is the time of n-th arrival and Xn is the value sampled at that moment. Our argument is
based on induction over the number of arrivals.

Consider V T with only one arrival, that is NT = 1, and max {X0,X1} < α. There are two
cases to look at, namely X0 > X1 and X0 < X1, because X0 = X1 has been established before.

• For X0 > X1: Q
(
X [0,T ]

0

)
= 0 > Q

(
X [0,τ1)

0 ,X [τ1,T ]
1

)
by (C).

• For X0 < X1:
∫ α

X1

Q
(
w [0,T ]

)
dw = 0 >

∫ α

X1

Q
(
X [0,τ1)

0 ,w [τ1,T ]
)
dw by (IM).

Conclude that Q (V T ) = 0.
By induction, suppose that there is no trade for allV T with the number of arrivals NT less than

K > 2 andmax {X0, . . . ,XN } < α. ConsiderV T withNT = K+1 arrivals andmax {X0, . . . ,XN } <
α, and, again, we distinguish between two cases.
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• For XK > XK+1: Q
(
V [0,τK ),X [τK ,T ]

K

)
= 0 > Q

(
V [0,τK ),X [τK ,τK+1)

K ,X [τK+1,T ]
K+1

)
by (C).

• For XK < XK+1:
∫ α

XK+1

Q
(
V [0,τK ),w [τK ,T ]

)
dw = 0 >

∫ α

XK+1

Q
(
V [0,τK ),X [τK ,τK+1)

K ,w [τK+1,T ]
)
dw

by (IM)

Conclude that Q (V T ) = 0, thus there is no trade whenever max
t>0

Vt < α.

It follows that the surplus is at most E
[
VT · 1

(
max
t>0

Vt > α
)]
, which implies that the seller’s

profit is not higher than

E
[
VT · 1

(
max
t>0

Vt > α
)]
− e−λT

∫ 1

α

[1 − F (v )] .

In the proof of Theorem 1, we showed that this equals to Π(α) as defined in Equation (?). Of
course, Π(α) 6 max

α∈[0,1]
Π(α) = Π(α∗) that concludes the proof. �

References

M. Akan, B. Ata, and J. D. Dana Jr. Revenue management by sequential screening. Journal of
Economic Theory, 159(B):728–774, 2015.

M. Arellano, R. Blundell, and S. Bonhomme. Earnings and consumption dynamics: A nonlinear
panel data framework. Econometrica, 85(3):693–734, 2017.

M. Armstrong. Nonlinear pricing. Annual Review of Economics, 8:583–614, 2016.

M. Battaglini and R. Lamba. Optimal dynamic contracting: the first-order approach and beyond.
Theoretical Economics, forthcoming, 2019.

D. Bergemann and P. Strack. Dynamic revenue maximization: A continuous time approach. Jour-
nal of Economic Theory, 159:819–853, 2015.

D. Bergemann and J. Välimäki. Dynamic mechanism design: an introduction. Journal of Economic
Literature, forthcoming, 2019.

T. Börgers. An Introduction to the Theory of Mechanism Design. Oxford university press, 2015.

J. Bulow and J. Roberts. The simple economics of optimal auctions. Journal of Political Economy,,
97(5):1060–1090, 1989.

P. Courty and H. Li. Sequential screening. Review of Economic Studies, 67(4):697–717, 2000.

J. D. Dana Jr. Advance-purchase discounts and price discrimination in competitive markets. Journal
of Political Economy,, 106(2):395–422, 1998.

R. Deb. Intertemporal price discrimination with stochastic values. University of Toronto, 2014.

24

Electronic copy available at: https://ssrn.com/abstract=3491015



P. Esö and B. Szentes. Optimal information disclosure in auctions and the handicap auction. Review
of Economic Studies, 74(3):705–731, 2007.

P. Esö and B. Szentes. Dynamic contracting: an irrelevance theorem. Theoretical Economics, 12(1):
109–139, 2017.

E. Farhi and I. Werning. Insurance and taxation over the life cycle. Review of Economic Studies, 80
(2):596–635, 2013.

F. Guvenen, F. Karahan, S. Ozkan, and J. Song. What do data on millions of u.s. workers reveal
about lifecycle earnings dynamics? Econometrica, forthcoming, 2021.

D. Krähmer and R. Strausz. Optimal sales contracts with withdrawal rights. Review of Economic
Studies, 82(2):762–790, 2015.

T. Kruse and P. Strack. Optimal stopping with private information. Journal of Economic Theory,
159(B):702–727, 2015.

R. B. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73, 1981.

A. Pavan, I. Segal, and J. Toikka. Dynamic mechanism design: A Myersonian approach. Econo-
metrica, 82(2):601–653, 2014.

G. Peskir and A. N. Shiryaev. Optimal Stopping and Free-Boundary Problems. Springer Applied
Maths, 2006.

J.-C. Rochet. A necessary and sufficient condition for rationalizability in a quasi-linear context.
Journal of Mathematical Economics, 16(2):191–200, 1987.

S. Stantcheva. Dynamic taxation. Annual Review of Economics, forthcoming, 2020.

25

Electronic copy available at: https://ssrn.com/abstract=3491015


	1 Introduction
	2 An example
	3 Setup
	3.1 Primitives

	4 A dynamic pricing strategy
	5 The simple economics of dynamic pricingThe term "simple economics" is a homage to bulowroberts which provides a price theoretic interpretation for myerson1981optimal's optimal auction problem.
	6 Comparative statics
	7 Optimality: a mechanism design approach
	8 Final remarks
	9 Appendix
	9.1 Proofs for the pricing mechanism "426830A M,p "526930B 
	9.2 Proofs for the general dynamic mechanism design problem


