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Abstract

Financial constraints preclude many surplus producing economic transactions, and inhibit the growth of 
many others. This paper models financial constraints as the interaction of two forces: the agent has persistent 
private information and is strapped for cash. The wedge between the optimal and efficient allocation, termed 
distortion, increases over time with each successive “bad shock” and decreases with each “good shock”. At 
any point in the contract, an endogenous number of “good shocks” are required for the principal to provide 
some liquidity and then eventually for the contract to become efficient. Efficiency is reached almost surely. 
The average rate at which contract becomes efficient is decreasing in persistence of shocks; in particular, 
the iid model predicts a quick dissolution of financial constraints. This speaks to the relevance of modeling 
persistence in dynamic models of agency. The problem is solved recursively, and building on the literature, 
a technical tool of finding the minimal subset of the recursive domain that houses the optimal contract is 
further developed.
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1. Introduction

Long term economic transactions are often marred by financial constraints. A sizeable body 
of empirical work documents the wide prevalence of financial constraints, their micro impact on 
firms size and growth, and macro impact on the misallocation of capital in an economy.1 With 
an aim to provide theoretical constructs to these empirical regularities, Kiyotaki (2012), in an 
elegant note, advocates “a mechanism design approach to illustrate how different environments 
of private information and limited commitment generate different financial frictions.” In the spirit 
of the said agenda, this paper posits financial constraints as a product of the interaction between 
(i) persistent private information, and (ii) limitations on the ability of agents to generate timed 
cash flows.

We study a dynamic screening problem with Markovian shocks where the principal offers 
history dependent allocations and transfers to the agent. If the agent has a cash reserve or pledge-
able assets, the principal will ask the agent to post a bond or deposit collateral. Broadly, optimal 
distortions are then frontloaded, going from maximal to zero, and optimal payments are back-
loaded, maximally delayed to the extent possible. However, in many real situations, e.g. in supply 
contracts, managerial compensation, provision of public goods and regulation, the agent may not 
have the requisite cash to post a bond or collateralize existing assets. This has implication for 
both the optimal structure of distortions, and the sequential breakup of payments.2

Taking inspiration from the literature on financial contracting, we model the aforementioned 
situation by restricting the stage (or per-period) utility to be positive. The idea being that the 
agent requires, in the least, the amount of cash that covers the consumption/production decisions 
in every period. The economic force generated by the interaction of this stronger feasibility 
restriction and private information is termed as the financial constraint. This is because if there 
is no private information, the efficient allocation is implementable, and in the presence of a bond 
or collateral, efficiency is achievable much more easily through maximal backloading of payoffs. 
So, it is the interaction of the two forces together that produces financial constraints. Further, we 
show that persistence in private information, an empirically relevant feature of the model, makes 
this interaction even richer in terms of constraining the optimal allocation.3

The big picture question is: when do these financial constraints bind and when they do, what 
dynamic distortions do they generate? In asking and then trying to answer this question, we 
provide a deeper understanding of the role of financial constraints in dynamic mechanism design, 

1 For example, Campello et al. (2010) conduct a survey of 1050 CFOs across the US, Europe and Asia, and found 
considerable impact of financial constraints on firm behavior in the aftermath of the Great Recession. Banerjee and Duflo 
(2014) exploit a change in policy by the Indian government to show that most firms in their study were credit constrained, 
and a relaxation of the same led to a spurt in growth. Moll (2014) studies credit constraints as a channel of misallocation 
of capital in firms and aggregate productivity losses, and Midrigan and Xu (2014) provide evidence for financing as 
source of misallocation in plant level data in Columbia and Korea.

2 Distortions here are defined as the distance between the optimal and efficient allocation. In a dynamic contract these 
evolve over time as a function of the exogenous parameters and endogenous realization of shocks.

3 For example, İmrohoroğlu and Tüzel (2014) find the average persistence in total factor productivity of firms in 
Compustat data from 1962 to 2009 to be 0.7.
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and a deeper understanding of the role of persistence in agency frictions in dynamic financial 
contracting.4

The rest of this introduction is divided into three parts. First is the structure of the optimal 
contract and a plausible mechanism that implements it. Second is unpacking the economic con-
tent of the novel elements – (i) cash versus no cash constraints, (ii) interpretation of positivity of 
stage utility, and (iii) the role of persistence in agency frictions in generating financial constraints. 
Third, is an overview of the literature. We expound upon each after briefly describing the model.

The formal model is as follows. A big firm (principal) repeatedly producing a final good 
contracts with a smaller firm (agent) that supplies an important input. Each period, the small 
firm privately observes either a low (“good shock”) or high (“bad shock”) marginal cost. After 
being drawn from a prior, costs evolve according to an exogenous two state Markov process. 
Preferences are quasi-linear. The small firm requires a constant cash flow to cover its costs of 
production, hence the stage utility must be positive: we say that the agent is thus strapped for 
cash. The big firm is tasked with designing a contract which sets supply of inputs by the small 
firm, and payments for its production. Both parties can commit to a dynamic contract.

Structure of the optimal contract. A Pareto-optimal contract chooses allocations and trans-
fers that satisfy incentive compatibility and cash-strapped constraints to maximize the profit of 
the big firm while ensuring a minimum ex ante payoff for the small firm. Fig. 1a depicts a typ-
ical sequence of technology shocks. For a history of cost realizations ht and current cost θi , let 
q(θi |ht ) and U(θi |ht ) be the allocation and expected utility of the small firm. At this point, if the 
marginal cost of incentive provision is zero, then q(θi|ht ) = qe(θi), that is the (statically) effi-
cient quantity is supplied. If it is positive, then q(θi|ht ) = qe(θi) − d(θi |ht ) where d measures 
the history dependent optimal distortion. As is standard, the low cost type always supplies the 
efficient quantity: q(θL|ht ) = qe(θL).5 On the other hand, each “bad shock” increases optimal 
distortions: q(θH |ht , θH ) < q(θH |ht ) < qe(θH ).6 In addition, the realization of a “good shock” 
decreases the optimal distortion: q(θH |ht ) < q(θH |ht , θL). An endogenous number of consec-
utive “good shocks”, say n(ht ), is required for the optimal distortion to reach zero. For every 
additional “bad shock”, as distortions increase, this number increases: n(ht, θH ) ≥ n(ht ). Once 
the optimal distortion reaches zero it stays at zero, that is, efficiency is an absorbing state. In the 
long run, the efficient contract is supplied almost surely.7

With reference to Fig. 1a, the expected utilities of both the low and high cost types go up 
after a “good shock” and go down after a “bad shock”. That is, as long as the contract is ineffi-
cient: 

(
U(θL|ht , θH ), U(θH |ht , θH )

) ≤ (
U(θL|ht ), U(θH |ht )

) ≤ (
U(θL|ht , θL), U(θH |ht , θL)

)
. 

Two thresholds on the vector of expected utilities divide the evolution of the optimal contract 
into three regions - illiquidity, liquidity and efficiency; see Fig. 1b. The contract typically starts 
in the illiquid region – both incentive and cash-strapped constraints bind. A low cost type ei-
ther keeps the contract in illiquidity or can transition it to liquidity. A high cost type decreases 

4 On the desire to unify the key economic ideas across these two bodies of work Sannikov (2013) writes “While several 
common themes emerge, in general there is no unified way to analyze settings of dynamic adverse selection and moral 
hazard, and this area is ripe for future research.”

5 A low cost realization is better for economic surplus than a high cost realization, thus qe(θL) > qe(θH ).
6 This is in contrast to dynamic mechanisms without financial constraints that emphasize progressively decreasing 

distortions along all histories (see Besanko (1985) and Battaglini (2005)) or on average (see Garrett et al. (2018)).
7 Beyond these qualitative properties, we pin down the optimal limit contract in closed form, as the Markov process 

governing agent’s evolution of types converges to the identity matrix. This provides intuition for the structure of the 
optimal dynamic contract with highly persistent agency frictions.
3
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Fig. 1. The optimal contract.

the expected utility of the small firm which keeps it illiquid. After an endogenous number of 
low cost realizations, the expected utility of the small firm reaches a critical threshold at which 
the cash-strapped constraint becomes slack. This is called the liquid region. Liquidity is not an 
absorbing state, a high cost realization can push the small firm back into illiquidity. The liquid 
region forms a penultimate zone towards efficiency. Once liquid, the realization of one more low 
cost pushes expected utility of the small firm beyond the second threshold into the absorbing 
state of efficiency.

At a technical level, we use the recursive approach to characterize the optimal contract. More 
specifically, we construct a “shell”, the minimal subset of the recursive domain which houses 
the optimal constrained contract. The recursive domain is too large to make crisp predictions 
about the exact structure of dynamic distortions. We show that as long as the optimal contract 
is inefficient, the expected utility of the agent must always lie in this shell. It allows us to show 
all the aforementioned monotonicity properties of the evolution of the optimal contract. We also 
provide a simple price-theoretic explanation of the construction of the shell.

A combination of working capital and eventual take-over implements the optimal contract. 
In the illiquid region, the cash-strapped constraint binds and the big firm only provides working 
capital to the small firm. Through a sequence of consecutive low cost realizations, the small firm 
has to earn its way into liquidity. In the liquid region, the big firm promises to take over the small 
firm on the realization of one more low cost type for a determinable strike price. Thereafter, the 
small firm operates in-house, producing the efficient quantity.8

The role of financial constraints and persistence of private information. Allowing for a 
long-term contract helps mitigate the problem of agency frictions by backloading payoffs. Finan-
cial constraints, though, restrict the extent of backloading. Dynamic distortions in our framework 
are an additive sum of two effects: backloading of payoffs and illiquidity due to financial con-
straints; the latter increases with each “bad shock”, overturning the standard result of decreasing 
distortions in dynamic mechanism design. Efficiency is still a certainty, though the path towards 
it is much more constrained in comparison to the model sans financial constraints.

We also reconsider the interpretation of the positivity of stage utility as a limited liability 
constraint for small businesses. It is clear that the cash strapped constraint is welfare reducing 

8 In the corporate finance view of our model, the Modigilliani-Miller Theorem (Modigliani and Miller (1958)) does 
not hold since capital structure matters for the value of the firm. However, given efficiency is attained almost surely in 
the long-run, the Modigilliani-Miller theorem holds asymptotically.
4
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from the perspective of total welfare (or surplus), but is it “beneficial” for the agent? Consider 
the principal profit maximizing contract on the Pareto frontier in which the big firm has all the 
bargaining power. The ex ante expected utility of the small firm from the contract is determined 
endogenously as part of the optimum. We show that in the iid limit the ex ante expected utility 
of the agent is higher in our model than in the benchmark, and in the perfect persistently limit 
the ranking can reverse for certain parameters. This points to a cautious interpretation of the 
positivity of the stage utility as a limited liability constraint, which is the standard in the literature.

Finally, we take this model as representative of firm dynamics in an economy with financial 
constraints and numerically show how persistence in agency frictions makes a marked differ-
ence to the substantive predictions of the model. We make three broad points. The fraction of 
financially constrained firms in the short-run is monotonically increasing in the persistence of 
technology shocks. The average rate at which firms converge to the state of being unconstrained 
is decreasing in persistence; in particular, the iid model predicts a quick dissolution of financial 
constraints. And, variance in the total value of both constrained and unconstrained firms is larger 
with persistence. The standard dynamic financial contracting literature that operates in the iid 
world would miss all these, empirically important, comparative statics.9

Related literature. This paper sits at the intersection of at least two strands of theoretical 
models: dynamic mechanism design with serially correlated information (see surveys by Vohra 
(2012), Krähmer and Strausz (2015a), Pavan (2016), and Bergemann and Välimäki (2019)) and 
dynamic financial contracting with iid technologies (see surveys by Biais et al. (2013), and San-
nikov (2013). Three ingredients interact to determine the structure of dynamic inefficiencies: 
correlation in agency frictions, strength of feasibility restrictions, and permissibility of termina-
tion. The overarching role of each combination of ingredients is to create frictions in dynamic 
contracting that lead to realistic qualitative predictions.

Tables 1 and 2 enlist the most closely related papers; Table 1 features screening and Table 2
features cash flow diversion as the underlying agency friction. Within each table, papers are 
classified along inclusion/exclusion of the three aforementioned modeling ingredients. In terms 
of long-term predictions, once the recursive problem is appropriately set up, it can be shown that 
in each of the papers the optimal contract converges to the efficient allocation in the absence 
of the termination clause, and it converges either to efficiency or termination in the presence 
of the termination clause.10 The key economic force that leads to this result is backloading of 
information rents to the extent possible.11

At a high level, ours is the first paper to precisely characterize the short-run predictions in 
terms of the monotonic nature of dynamic distortions: “good shocks” monotonically push the 
allocation towards efficiency and “bad shocks” take it away from it. As noted in Table 1, it is the 
first paper to analyze a dynamic screening model (as opposed to a cash flow diversion or moral 
hazard problem) with both persistence in private information and financial constraints, nudging 
the literature on dynamic mechanism design to explicitly incorporate financial constraints. Fur-
ther it (i) identifies the minimal subset of the recursive domain that houses the optimal contract; 

9 We believe this an important point to consider for the literature on firm dynamics, as a step towards bridging the 
reality of the wide and prolonged prevalence of financial constraints, especially in developing countries, and the limited 
impact of agency frictions in the predictions of the iid model.
10 The proof follows from a straightforward application of the martingale convergence theorem.
11 Note that an important assumption in all the papers we discuss is that the principal can commit to the dynamic 
contract, thus a simple version of the revelation principle is applicable. See Bester and Strausz (2001), Maestri (2017)
and Doval and Skerta (2019) for the limited commitment case with no financial constraints.
5



I. Krasikov and R. Lamba Journal of Economic Theory 193 (2021) 105196
Table 1
Dynamic screening.

IR CS w/o termination CS w/ termination

IID private information trivial KLT & this paper KLT & this paper
Markovian private information Battaglini (2005) this paper this paper (partially)

IR means individual rationality, CS means cash-strapped, w/o means without, w/ means with, and KLT stands for Krishna 
et al. (2013).

Table 2
Dynamic cash flow diversion.

IR CS w/o termination CS w/ termination

IID technology trivial CH & FK CH & Biais et al. (2007)
Markovian technology {∅} Fu and Krishna (2019) {∅}
CH and FK stand for Clementi and Hopenhayn (2006) and Fu and Krishna (2019) respectively.

(ii) clarifies the connection between limited liability and being strapped for cash; (iii) provides 
an explicit characterization of the optimal contract in the perfectly persistent limit which shows 
“good shocks” have a stronger effect on distortions than “bad shocks”, this fact underlies the 
long-term efficiency result; (iv) solves for the optimal contract in continuous time, which seeks 
to unify the literatures on cash flow diversion and screening, since the models converge to the 
same limit in continuous time; and (v) explores the implications of persistence in agency frictions 
on firm dynamics.

The two most closely related papers are Battaglini (2005) and Krishna et al. (2013). Battaglini 
(2005) studies a similar screening model, but where the agent has cash to post a bond. More 
specifically, only the total expected utility over time is required to be positive in every period. 
The structure of short-run distortions are thus quite different – the contract becomes efficient 
forever as soon as the agent assumes a “good shock”, and it has decreasing distortions along the 
history of constant “bad shocks”. In a departure from that paper, and more generally the literature 
on dynamic mechanism design, our paper explores the implications of cash constraints for the 
agent with persistent private information.

Krishna et al. (2013) study the same model as ours, repeated screening with the cash-strapped 
constraint, but where the agent’s types follow an iid process. Since theirs is a special case of our 
model, all our results also hold in their setup. However, the focus of the paper is on long-term 
efficiency. We build upon their work in at least three ways. First, the monotonicity of allocation 
rule, even for the iid model is novel to our paper. Second, the Markov model is technically much 
harder to solve, as has already been noted in simpler dynamic mechanism design models without 
financial constraints.12 Third, persistence adds greater empirical relevance to the analysis, as is 
evident from the applications of standard dynamic mechanism design models to public finance 
(see Stantcheva (2020)).13

12 Describing the important distinguishing feature of dynamic mechanism design, Bergemann and Välimäki (2019)
state: “In all of the above applications, the types of some agents and/or the set of allocations available change in a 
non-trivial manner across periods. For us, this is the distinguishing feature of dynamic mechanism design.”
13 To the best of our knowledge, the earliest reference of modeling financial constraints directly in dynamic mechanisms 
is Sen (1996). The paper looks at a two period screening model with persistent private information and limits on the 
agent’s liability, but where the principal can fire (and replace) the agent after the first period. It shows that limits on 
liability restrict the principal’s ability to screen the agent, and termination offers greater flexibility.
6
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Clementi and Hopenhayn (2006) and Fu and Krishna (2019) both study the problem of cash 
flow diversion by the agent in a repeated setting, the former looks at an iid technology and the 
latter at a Markovian one. A simple way to map their framework into ours would be to change the 
time structure: At the start of every period the agent commits to a production plan after which 
his cost type is realized. The type is reported, agreed upon input quantity is supplied, and the 
agent is compensated for by the principal. The interpretation here is that agent does not know 
whether his cost would be low or high when he makes the production decision. Despite being 
a low cost type, he can misreport to be a high cost type, supply some portion of the produced 
quantity and sell the rest in the black market – a diversion of the economic surplus. While these 
models produce similar long-term predictions, the short-run structure of the optimal contract here 
is quite different than the screening literature.14

Our paper is also related to the recent work by Guo and Hörner (2018): They consider a dy-
namic principal-agent model with persistent private information where preferences are perfectly 
aligned, transfers are not allowed and the principal wants to maximize efficiency. The optimal 
contract converges almost surely either to permanent allocation (efficiency) or permanent non-
allocation (immiseration), driven by the fact that both front-loading and backloading of payoffs 
can occur at the optimum. In our framework, preferences are misaligned, the expected utility is 
continuously backloaded, and the optimal contract always converges to efficiency. A technical 
aspect we share with Guo and Hörner (2018) is the characterization of a subset of the recursive 
domain that houses the optimal contract, which allows us to make precise statements about the 
short and long run properties.15,16

Financial constraints have also been explored in the sequential screening literature pioneered 
by Courty and Li (2000). For example, Krähmer and Strausz (2015b) consider a sequential 
screening model with ex post participation constraints. They show that with these additional 
constraints the optimal contract is static and does not illicit the agent’s information sequentially. 
One way to map their framework into ours would be to consider the two period version of our 
model, and require the first period allocation to be (exogenously) zero. Then, the cash-strapped 
constraints require that no payments can be charged in the first period. As a consequence the 
optimal contract replicates the “static optimum”. In contrast our model highlights that multi-
period interactions can extract private information in an incentive compatible fashion, even with 
stronger feasibility restrictions.17

Finally, the cash-strapped constraint breaks the linearity of transfers across time. The spirit of 
this exercise is shared by other related works: Amador et al. (2006), and Halac and Yared (2014)

14 The literature on dynamic financial contracting is also seeped in plausible implementations of the optimal allocation. 
DeMarzo and Fishman (2007) and Biais et al. (2007) are leading references, and Golosov et al. (2016) provide an 
excellent survey of the techniques with an emphasis on the applications to macroeconomics and finance. We show that 
such implementations have a natural interpretation in the corresponding screening and adverse selection models.
15 Zhang (2009) was the first paper to exploit the construction of a “shell” to characterize the optimal contract in a two-
types dynamic adverse selection model. This approach has also been used by Fu and Krishna (2019). The identification of 
the minimal subset of the recursive domain that houses the optimal contract separates us from these papers. This allows 
us to show the direction of allocative distortions over time.
16 See also Li et al. (2017) and Lipnowski and Ramos (2019) for a repeated model of allocation sans transfers, but 
without commitment on the side of the principal.
17 In a similar vein, Ashlagi et al. (2019) consider a framework where a monopolist wants to sell k goods in k periods, 
valuations are iid over time, and the mechanism must satisfy ex post individual rationality. They provide an implemen-
tation of the optimal mechanism through delayed payments where all the utility is paid in the last period. We look at a 
different model where all payoffs cannot be delayed to the last period.
7
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study models of delegation. Thomas and Worrall (1990), Garrett and Pavan (2015), Luz (2015), 
and Arve and Martimort (2016) consider dynamic models of private information where the agent 
is risk averse. Krasikov et al. (2019) analyze a dynamic screening model with individual ratio-
nality, but where the principal is more patient than the agent. In all these papers, there is a cost 
to moving transfers or payments across time.

2. Model

The key economic forces in dynamic contracting with persistent private information can be 
formulated through various related models. We choose the repeated version of the marginal cost 
screening model, based on Laffont and Martimort (2002). A big firm (principal) specializing in a 
final good requires a non-durable input that is produced by a smaller firm (agent) every period at 
a cost θq , where θ is the small firm’s private information.18 The principal values the final good 
at V (q), where V : R+ → R+ satisfies the Inada conditions.19 She pays a price p to the agent 
for supplying her the intermediate good (or input), and the utility of both is linear in the price.20

Therefore, the per-period (or stage) utility for the principal and agent is given by V (q) − p and 
p−θq , respectively. The contract lasts for T periods, where T ≤ ∞. There is a common discount 
factor δ.

The marginal cost θ , often referred to as the agent’s type, can take on two values: � =
{θL, θH }, where 0 < θL < θH . It is drawn from a prior μ = (μL,μH ), and then evolves ac-
cording to a Markov process: f (θL|θi) = αi , and f (θH |θi) = 1 − αi for i = H, L. Distributions 
have full support: μ >> 0 and f >> 0. The Markov process is assumed to be “persistent”: 
αL ≥ αH , and for simplicity of exposition, from hereon we will assume a symmetric Markov 
process: αL = 1 − αH = α ≥ 1

2 . In the appendix, we consider the general asymmetric case.
Both the principal and the agent can commit to a dynamic contract. Invoking the revelation 

principle, therefore, we can focus on the direct mechanism. Every period the agent reports his 
marginal cost to the principal. The principal offers a menu of history dependent price-quantity 
pairs to the agent. Her objective is to maximize her expected profit subject to incentive and 
feasibility constraints. We solve for the Pareto frontier by introducing as a parameter the agent’s 
minimum ex ante share of the total economic surplus, v0. The set of parameters is thus given by 
� = {V (.),�,μ,α, δ, v0}.

Formally the mechanism is: m = 〈p,q〉 = (
p
(
θ̂t |ht−1

)
, q
(
θ̂t |ht−1

))T
t=1, where ht−1 and θ̂t are, 

respectively, the history of reports up to t − 1 and current report at time t .21 The reported history 
ht is recursively defined as ht = {ht−1, θ̂t } starting with h0 = ∅. The set of possible histories 
at time t is denoted by Ht . Define the private history of the agent to be ht

A = {ht−1
A , θt , θ̂t−1}, 

starting from h0
A = {θ1}, where θ̂t and θt are the reported and actual types, respectively. Fixing 

the set of parameters �, for a given direct mechanism m, we have a dynamic decision problem 
described by 〈m,�〉 in which the strategy for the agent, (σt )

T
t=1, is simply a function that maps 

his private history into an announcement every period: ht
A 
→ σt (h

t
A) ∈ �.

18 We can introduce a fixed cost of production: c(θ, q) = θq + F without changing any of our results. For simplicity it 
is normalized to zero: F = 0.
19 Technically: (i) V ′(q) > 0, V ′′(q) < 0 for all q ≥ 0, (ii) V (0) = 0, (iii) lim

q→0
V ′(q) = ∞, lim

q→∞V ′(q) = 0.

20 Throughout, the principal will be referred to as a ‘she’ and the agent as a ‘he’.
21 At the cost of minimal confusion, subscripts will be used interchangeably for time and L/H . Moreover, as is standard, 
the contract is restricted to lie in l∞ .
8
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Define the stage and expected utility of the agent (under truthful reporting) after any history 
of the contract tree to be

u(θt |ht−1) = p(θt |ht−1) − θtq(θt |ht−1),

U(θt |ht−1) = u(θt |ht−1) + δE
[
U(θ̃t+1|ht−1, θt ) | θt

]
.

It is straightforward to show that the contract space can equivalently be expressed as 〈u,q〉 or 
〈U,q〉. We shall use the three formulations interchangeably.

The constraints on the space of contracts can be divided into two categories – incentives and 
feasibility. The contract 〈U,q〉 is said to be incentive compatible if truthful reporting is profitable 
for the agent. Using the one shot deviation principle, formally, ∀ ht−1 ∈ Ht−1 ∀ t :

U(θt |ht−1) ≥ p(θ̂t |ht−1) − θtq(θ̂t |ht−1) + δE
[
U(θ̃t+1|ht−1, θ̂t ) | θt

]
for all θt , θ̂t ∈ �. The Markovian assumption on stochastic evolution of types ensures that the 
agent wants to report truthfully even if he has lied in the past.

A stronger notion of feasibility is invoked in the paper than the standard dynamic mechanism 
deign models. A contract is said to be cash-strapped if it must provide each type of the agent a 
non-negative stage utility at every history. Formally:

u(θt |ht−1) ≥ 0 ∀ θt ∈ �, ht−1 ∈ Ht−1,∀ t.

Individual rationality, the more permissive feasibility criterion would demand the following:

U(θt |ht−1) ≥ 0 ∀ θt ∈ �, ht−1 ∈ Ht−1,∀ t.

Under individual rationality the agent can be asked to forgo payments or deposit upfront cap-
ital with a promise of being compensated for it later. We shall refer to the framework which 
invokes the individual rationality constraint as the “benchmark model”. The cash-strapped con-
straint precludes contracts with such delayed promises; therefore, it acts as a credit constraint for 
the agent. As a consequence the principal cannot maximally backload the agent’s payoffs. The 
main idea behind this constraint is that the agent has to be compensated for the production costs 
in every period.22

3. Optimal contract

Define s(θ, q) = V (q) −θq to be the static surplus, succinctly expressed as s(θ) = V (q(θ)) −
θq(θ) for the direct mechanism. It is straightforward to note that the efficient quantity that maxi-

mizes the surplus is given by V ′(qe(θ)) = θ . Moreover, let S =
T∑

t=1
δt−1E[s(θ̃t )] be the (ex ante) 

expected surplus. The principal’s problem, (P∗), can be stated as:

(P∗) max〈U,q〉 S − [μLU(θL) + μH U(θH )]

subject to q ≥ 0,

22 Two aspects of the contractual space can be noted here. First, if a contract is strapped for cash it necessarily satisfies 
individual rationality while the opposite is not necessarily true. Second, just as the incentive constraint, the cash-strapped 
constraint holds both “on” and “off” path. Even if the agent may have misreported in the past, the principal delivers a 
non-negative stage utility to him if he is truthful today.
9
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(PK): μLU(θL) + μH U(θH ) ≥ v0, and

ICL(ht−1), ICH (ht−1),CL(ht−1),CH (ht−1) ∀ ht−1 ∈ Ht−1 ∀ t,

where (PK) is the ex ante promise keeping constraint, and ICi(h
t−1) and Ci (h

t−1) are the incen-
tive and cash-strapped constraints, respectively, for type θi in period t after history ht−1. Since 
quantity is always non-negative at the optimum, we shall drop that constraint.

Note that v0 parameterizes the bargaining power of the agent, and maps the Pareto frontier. In 
the absence of (PK), the solution to (P∗) will choose the principal-optimal contract which will 
deliver the agent an ex ante utility, say v. Moreover, (PK) binds if and only if v0 ≥ v.

We consider a relaxed problem where we ignore ICH(ht−1) for all histories. A justification 
of this is provided in Section 6.10, including sufficient conditions for global optimality. The 
principal’s relaxed problem, (RP∗), reads as follows:

(RP∗) R∗(v0) = max〈U,q〉 S − [μLU(θL) + μH U(θH )]

subject to (PK), and

ICL(ht−1),CL(ht−1),CH (ht−1) ∀ ht−1 ∈ Ht−1 ∀ t

where R∗(v0) is the value of the objective – the principal’s profit at the constrained optimum. 
Also, we shall denote the ex ante economic surplus generated by the optimal contract by S∗(v0) =
R∗(v0) + max

{
v, v0

}
.

Following Myerson, we write down an optimization problem equivalent to (RP∗) where a 
subset of binding incentive constraints is used to eliminate U, and the objective and all remaining 
constraints are expressed only in terms of q. Pointwise optimization of allocations along all 
histories then yields the efficient quantity for the low cost type: q(θL|ht−1) = qe(θL), and for the 
high cost type:

P (ht−1, θH )
(
V ′(q(θH |ht−1)) − θH

)
︸ ︷︷ ︸

marginal benefit

= r(ht−1)︸ ︷︷ ︸
marginal cost

(∗)

where the left hand side of equation (∗) represents the expected marginal benefit of allocating 
quantity q(θH |ht−1), and right hand side represents the marginal cost of incentive provision (or 
information rent) at history ht−1. The optimal allocation is implicity defined by the function 
Q : R+ →R+:

V ′(Q(x)) = θH + x�θ (1)

where �θ = θL − θH and x(ht−1)�θ = r(ht−1)

P (ht−1,θH )
is the optimal distortion. This equation can 

instead be written succinctly as q(θH |ht−1) = qe(θH ) − d(θH |ht−1), and it is easy to see that d
is increasing in x.23 We shall characterize r and hence x, which in turn pins down the evolution 
of optimal quantities and expected utilities.

In what follows, we first solve the two period model to provide some basic intuition, and then 
present the main result on the characterization of the optimal contract. In addition, a complete 
solution of the optimal limit contract when persistence converges to unity is stated, followed by a 
sketch of the proof using the recursive approach, and finally a brief discussion on implementation 
of the optimal contract is provided.

23 The exact relationship is as follows: Q(x) = (
V ′)−1

(θH + x�θ) = θH − d .
10
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3.1. Two period model

Consider problem (RP∗) for T = 2. In addition to (PK), we have to consider the following 
set of constraints:

ICL(∅),CL(∅),CH (∅), and ICL(θi),CL(θi),CH (θi) for i = L,H

It can be shown that (i) CL(θL) and CL(θH ) are implied by the other constraints, (ii) ICL(∅), 
ICL(θH ), CH (∅) and CH (θH ) all bind at the optimum, (iii) CL(∅) can bind sometimes, and (iv) 
ICL(θL) and CH (θL) can be assumed to hold as an equality, they bind if CL(∅) does. Using the 
set of binding constraints, we want to express μLU(θL) + μH U(θH ) as a function of quantities. 
ICL(∅) is the key first period constraint which binds at the optimum:

U(θL) = �θq(θH ) + u(θH ) + δ [αu(θL|θH ) + (1 − α)u(θH |θH )]

= U(θH ) + �θq(θH ) + δ(2α − 1) [u(θL|θH ) − u(θH |θH )] .

The term (2α −1) is essentially the impact of misreport by agent on his expected utility in period 
2. Using the second period binding incentive constraint ICL(θH ), we can rewrite this equation 
in the form of an “envelope formula”:

U(θL) − U(θH )

�θ
= q(θH ) + δ

(
2α − 1

α

)
αq(θH |θH ). (2)

Equation (2) is a mini version of a much more general formula elegantly derived for contin-
uous type spaces in Pavan et al. (2014).24 The term 

( 2α−1
α

)
has been referred to variedly in the 

literature as the informativeness measure, impulse response and dynamic distortion. The rents to 
the high cost type have a straightforward expression25:

U(θH ) = δ(1 − α)�θq(θH |θH ). (3)

Additively, the total information rent to be paid to the agent is given as follows:

μLU(θL) + μH U(θH ) = �θμLq(θH ) + δ�θ (μLα + μH (1 − α)) q(θH |θH )

= �θP (θ1 = θL)q(θH ) + δ�θP (θ2 = θL)q(θH |θH ) (4)

where P (θt = θL) is the ex ante probability of being the low cost type in period t . Define the 
threshold generated by equation (4) for the efficient quantity to be v:

v = �θ

2∑
t=1

δt−1P (θt = θL)qe(θH |θ t−1
H ) = �θ

2∑
t=1

δt−1P (θt = θL)qe(θH ) (5)

and that generated by the optimal contract when we ignore (PK) to be v.26

Finally, CL(∅) can be expressed as follows27

CL(∅) : q(θH ) + δαq(θH |θH ) ≥ δαq(θH |θL) (6)

24 Battaglini and Lamba (2019) derive the same formula for a general discrete type space. Esö and Szentes (2017) also 
have a derivation of the result for continuous types.
25 Equation (3) is generated by the binding CH (∅), CH (θH ) and ICL(θH ) constraints: U(θH ) = u(θH ) +
δ [(1 − α)u(θL|θH ) + αu(θH |θH )] = δ(1 − α)�θq(θH |θH ).
26 v refers to the agent’s expected utility on the principal profit maximizing point of the Pareto frontier.
27 Because u(θL) = U(θL) − δ [αu(θL|θL) + (1 − α)u(θH |θL)] = �θq(θH ) − δ�θα [q(θH |θH ) − q(θH |θL)].
11
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The principal chooses q to maximize S − [μLU(θL) + μH U(θH )] subject to (PK) and CL(∅), 
where μLU(θL) + μH U(θH ) is given by equation (4). The precise closed form solution is pro-
vided in the appendix. Here we deliver the basic economic message.

Proposition 1. The optimal contract, q∗, with promised utility v0 ∈ [0, v), is characterized by the 
following allocation rule:

1. q∗(θL|h) = qe(θL) for h = ∅, θL, θH .
2. q(θH |θL) = qe(θH ) − d(θH |θL), where d(θH |θL) ≥ 0, and d(θH |θL) > 0 ⇔ CL binds.
3. q∗(θH |h) = qe(θH ) − d(θH |h) for h = ∅, H , where d(θH |θH ) > d(θH ) > 0.

It is always profitable to supply the efficient quantity to the low cost type for the marginal 
cost of this provision is zero. Using the framework of equation (∗), for the high cost type, the 
marginal cost of incentive provision (and hence dynamic distortion) is an additive sum of two 
economic forces:

r(h) = backloading of incentives(h)︸ ︷︷ ︸
r1(h):benchmark marginal cost

+financial constraints(h)︸ ︷︷ ︸
r2(h):added marginal cost

where h = ∅, θL, θH . In the “benchmark” model with individual rationality as opposed to the 
cash-strapped constraint, r2(h) = 0 ∀ h. Positivity of r2 here ensures that dynamic distortions 
accumulate to have a distinct form than in the benchmark model. Specifically, distortions can 
persist even after a low cost type has been realized in the first period, and for consecutive high 
costs, distortions actually increase over time.

When does CL bind? Equation (6) clearly establishes that low values of q(θH ) and q(θH |θH )

would violate CL. To compensate, we must simultaneously distort q(θH |θL) downwards, and 
q(θH ) and q(θH |θH ) upwards, in proportion to the shadow price imposed by the constraint. 
Fig. 2a shows the parametric range for which CL binds. In the μH × α rectangle, it plots 
q∗(θH |θL) – shades represent numerical values as shown on the vertical key on the right. The 
lightest region is the efficient quantity, and darker the shade, greater is the optimal distortion. It 
is clear that low values of μH and high values of α correspond to the largest liquidity crunch.28

Finally, the following result establishes the dynamics of utility, and value of total surplus. Let 
S∗(v0) be the total economic surplus generated by the optimal allocation in Proposition 1.

Corollary 1. In the optimal contract:

1. (u∗(θL|θL), u∗(θH |θL)) � (u∗(θL|θH ), u∗(θH |θH ));
2. S∗(v0) is increasing in v0, and strictly so for v0 ∈ [v, v].

It is obvious from equation (2) that the first period expected utility of the low cost type is 
higher than that of the high cost type. For a “good shock” the next period’s utility is larger for 
both types than that for a “bad shock”. Moreover, the optimal value of economic surplus is strictly 

28 Unless specified otherwise, throughout the paper: V (q) = 10
√

q , α = 0.75, θL = 3, θH = 4, v0 = 0. For the two 
period model we also assume δ = 1.
12
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Fig. 2. q∗(θH |θL) and S∗(v0) for the two period model.

increasing in the interval [v, v]; this is because a higher v0 shifts bargaining power towards the 
possessor of private information, increasing the total size of the pie.29

The two period model illustrates the key economic forces at play. It allows us to make edu-
cated guesses about what general results may look like. Are optimal distortions increasing in the 
number of consecutive “bad shocks”? Would these distortions be reduced by a “good shock”? Is 
efficiency is a certainty in the long run? What is the path to liquidity and efficiency? What role 
does persistence play in short and long run?

3.2. The main result

Now we state the main result that enlists an exhaustive characterization of the optimal con-
tract. It will be followed by a brief discussion of the result. We assume that the prior is first-order 
stochastically ranked around its Markov evolution: 1 −α ≤ μL ≤ α. This is strictly more general 
than assuming a “seed type”, that is μL = α or μL = 1 − α which is a standard in the recursive 
contracting literature.30

Using binding incentive and cash-strapped constraints, the total expected utility for the agent 
can be expressed as:

μLU(θL) + μH U(θH ) = �θ

T∑
t=1

δt−1P (θt = θL)q(θH |θ t−1
H ). (7)

This is direct generalization of equation (4) from the two period model. We denote the threshold 
generated by equation (7) for the efficient quantity to be v and that generated by the optimal 
contract when we ignore (PK) to be v.31 Further, (for infinite horizon) define E ⊂ R2+ to be the 
largest set of expected utility values, 

(
U(θL|ht ),U(θH |ht )

)
, that simultaneously satisfies the all 

29 For v0 < v, (PK) does not bind, and for v0 > v the efficient contract is the optimum, so S∗ is constant in both 
regions.
30 The assumption 1 − α ≤ μL ≤ α is made to ensure that the optimal contract starts in shell defined in Section 3.4. If 
the conditions are not satisfied then the optimal contract enters the shell the moment it gets a low cost realization. All our 
points still hold expect for the “lowest history” of continued high cost realizations.
31 It is easy to see that optimal contract is efficient for v0 ≥ v and selects the principal optimal contract for v0 < v.
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constraints in (RP∗) such that the allocation is efficient: q(θi|ht ) = qe(θi). It is easy to see (and 
will be proven later) that this set is non-empty; it takes the shape of cone; and it has a “lowest” 
point (we

L, we
H ) such that v = μLwe

L + μH we
H .

Theorem 1. Let T = ∞. The optimal contract, 〈U∗,q∗〉 (solution to (RP∗)), is characterized by 
the following properties.

A Optimal distortions:
1. Optimal contract is downward distorted and within period monotonic: q∗(θL|ht−1) =

qe(θL), q∗(θH |ht−1) = qe(θH ) − d(θH |ht−1), where d(θH |ht−1) ≥ 0, and q∗(θL|ht−1) >
q∗(θH |ht−1).

2. Distortions are strictly increasing for consecutive “bad shocks”: d(θH |ht−1, θs
H ) is strictly 

increasing in s for q∗(θH |ht−1) < qe(θH ).
3. Distortions are muted after “good shock”: d(θH |ht−1, θL) < d(θH |ht−1) for q∗(θH |ht−1) <

qe(θH ).

B Expected utility:
4. Expected utility increases (decreases) with a low (high) cost type: for q∗(θH |ht−1) < qe(θH ), (

U∗(θL|ht−1, θH ), U∗(θH |ht−1, θH )
) ≤ (

U∗(θL|ht−1), U∗(θH |ht−1)
) � (

U∗(θL|ht−1, θL), 
U∗(θH |ht−1, θL)

)
.

C Liquidity:
5. The contract becomes liquid above a fixed threshold which is below the efficient level: ∃

w
liq
L < we

L such that for U∗(θL|ht−1) ≥ w
liq
L , CL(ht−1) is slack.

D Efficiency:
6. Efficiency is an absorbing state: d(θH |ht−1) = 0 ⇒ d(θH |ht+s−1) = 0, and 

(
U∗(θL|ht−1), 

U∗(θH |ht−1)
) ∈ E ⇒ (

U∗(θL|ht+s−1), U∗(θH |ht+s−1)
) ∈ E ∀ ht+s−1 ∈ Ht+s−1|ht−1 .

7. An endogenous and monotonic number of “good shocks” are required for efficiency: ∃
n∗(ht−1) ∈ N such that d(θH |ht−1, θn∗

L ) = 0, and n∗(ht−1, θH ) ≥ n∗(ht−1).
8. Efficiency is achieved through a penultimate slacking of the cash-strapped constraint: 

CL(ht−1) binds ⇔ n∗(ht−1) ≥ 2, and CL(ht−1) is slack ⇔ d(θH |ht−1, θL) = 0.

E Long run:
9. Efficiency is a certainty: d(θH |ht+s−1) −−−→

s→∞ 0, and 
(
U∗(θL|ht+s−1), U∗(θH |ht+s−1)

)−−−→
s→∞

w ∈ E almost surely.

Part A of the theorem characterizes the optimal allocation rule through dynamic distortions 
produced by the periodic interaction between incentives and cash-strapped constraints. The low 
cost type supplies the efficient quantity, and the high cost’s supply is distorted downwards. Us-
ing the framework of equation (∗), the evolution of r(ht−1), viz. the marginal cost of incentive 
provision, determines the optimal distortions d , which drives the rest of the theorem.

In the inefficient region, every further high cost realization strictly increases dynamic dis-
tortions, thereby strictly decreasing the optimal quantity. In Fig. 1a, quantity along the history 
(ht−1, θ2

H ) is less than the quantity along (ht−1, θH ). This is in contrast to the results in dy-
namic mechanism design (without financial constraints) that emphasize decreasing distortions 
over time (see Section 6.1). Moreover, a “good shock” reduces the optimal distortions: quantity 
14
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along (ht−1, θL, θH ) is greater than that along (ht−1, θH ). These rankings of optimal distortions 
form the bedrock of our analysis.32

Part B tracks the optimal path of expected utility. For the inefficient contract, expected utility 
strictly increases along both dimensions after a “good shock” and reduces after a “bad shock”.

Part C characterizes liquidity. The interval 
[
w

liq
L , we

L

)
for U∗(θL|ht−1) witnesses slacking of 

CL(ht−1). The region can only be attained through a “good shock” (given the contract does not 
start in this region). Liquidity is not an absorbing state, and it is not synonymous with efficiency. 
Even in the liquid region, a “bad shock” can revert the contract back into the illiquid region, [
0, wliq

L

)
.

The path to efficiency is completed in part D. Efficiency is an absorbing state (point 6), that 
is, once the distortion for the high cost type reduces to zero, it stays zero: q(θH |ht−1) = qe(θH )

implies q(θH |ht−1, hs) = qe(θH ). The efficient region is reached through an endogenous number 
of “good shocks”. Moreover, on the realization of a high cost type, the number of consecutive 
low cost types required to reach the efficient region increases (point 7). Monotonicity in the 
endogenous number of shocks is an intuitive but formally novel addition to dynamic contracting.

In addition, for most parametric settings (where expected utility starts in the region 
[
0, wliq

L

)
), 

the efficient region is achieved through a penultimate liquid region -
[
w

liq
L , we

L

)
(point 8). Once 

the cash-strapped constraint is slack, efficiency is attained through one more low cost type. Thus, 
the liquid region is strictly larger than the efficient region.

Finally in part E, we close the theorem with the certainty of efficiency in the long-run. At any 
point on the contract tree (and hence any level of expected utility), the contract will converge to 
the efficient region almost surely. The expected utility of the agent turns out to be a martingale, 
and we use the martingale convergence theorem to establish the certainty of efficiency. In fact, at 
any point in the inefficient region, it requires infinitely many bad shocks to get to zero allocation, 
and finitely many good shocks to get to efficiency, the martingale convergence theorem does the 
rest.

In terms of screening literature (Table 1 in the introduction), Krishna et al. (2013) study the 
iid version of this model, and focus on long-term efficiency: only parts 1, 4, 6 and 9 of Theorem 1
are established in the paper. The short-run results on monotonicity of the allocation rule over time 
are especially missing. In terms of the cash flow diversion models (Table 2 in the introduction), 
Clementi and Hopenhayn (2006) show that points 6 and 9 of Theorem 1 will continue to hold for 
iid types; and Fu and Krishna (2019) show that points 5 and 8 also hold in the Markov extension 
of Clementi and Hopenhayn (2006). Neither paper though can explicitly characterize the optimal 
distortions, that is, points 1, 2 and 3 in Theorem 1 are unique to our paper. As a consequence, 
points 4 and 7 too are novel.

3.3. Optimal limit contract

While Theorem 1 provides a fairly precise characterization, the optimal contract can in fact 
be completely pinned down in the limit as the persistence in types converges to unity. This anal-
ysis, which is presented in the next proposition, sheds further light of the structure of dynamic 
contracts with highly persistent agency frictions. Recall the function Q defined in equation (1).

32 In the appendix we prove Theorem 1 for asymmetric Markov evolution. There the quantities are strictly decreasing 
and distortions strictly increasing along consecutive “bad shocks”, after scaling for the asymmetry through appropriate 
weights.
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Proposition 2. Let λ be the Lagrange multiplier on (PK). There exists an N ∈N and a sequence 
{dn}, function of �\{α}, and λ, such that the optimal limit contract can be described as follows:

1. It takes N low cost draws (in any order) to become liquid, and N +1 to reach efficiency where 

N is the largest positive integer that satisfies: Q 
(
(1 − λ)

μL

μH

)
≤ δNqe(θH ).

2. Specifically, lim
α→1

q∗(θH |ht−1) = Q(dn) such that for n draws of θL in ht−1,

Q(d0) = Q
(

(1 − λ)
μL

μH

)

Q(dn) = 1

δ
Q (dn−1) ≤ qe(θH ) for 1 ≤ n ≤ N

Q(dn) = qe(θH ) for n > N

If α = 1, then the optimal contract is a repetition of the static optimum, distortions are positive 
and constant. However, if α < 1, then efficiency is achieved almost surely. Intuitively, Proposi-
tion 2 describes the path to efficiency for α close to 1. In particular, distortions start at the level of 
the static optimum, strictly decrease for every low cost type, and remain constant for a high cost: 
so distortions for a fourth period θH are the same for two sequences of histories {θH , θL, θL}
and {θL, θH , θL}. Therefore by continuity, for high levels of persistence in private information, 
each “good shock” has a larger positive effect than the corresponding negative effect of a “bad 
shock”. This provides some intuition for why the optimal contract converges almost surely to 
efficiency in the long-run. Moreover, the Proposition explicitly pins down the exact distortions 
for the limit contract, which decrease multiplicative for every low cost type as a function of the 
discount factor.33

3.4. Sketch of the proof through the recursive formulation

A natural way to solve the infinite horizon problem would be to extend the sequential approach 
from the two period model. However, this quickly runs into the curse of dimensionality problem 
reminiscent of the literature on repeated games.34 We therefore turn to the recursive approach to 
reduce the dimensionality and provide a precise characterization of the optimal contract.

The recursive approach to dynamic contracting, understood at least since Green (1987), and 
Spear and Srivastava (1989), allows us to characterize the optimal contract using “promised 
utility” of the agent as a state variable. As noted by Fernandes and Phelan (2000), with Markovian
agency frictions, the recursive domain of “promised utility” need not be one-dimensional, its 
dimensionality depends on the cardinality of the type space.

Let S(ht−1) be the expected total surplus generated by the sequential contract from period t
onwards:

33 It is also interesting to note that when α = 1, both the benchmark model with individual rationality and the model 
with financial constraints give the same prediction. However, for α < 1, the predictions are markedly different.
34 The principal’s problem can be reduced to choosing q to maximize S − [μLU(θL) + μH U(θH )] subject to (PK) 
and CL(ht−1), where μLU(θL) + μH U(θH ) is given by equation (7). Introducing Lagrange multipliers for (PK) and 
all the CL(ht−1) constraints, we can then write down the optimal allocation rule, see Section 6.3 in the appendix. It is, 
however, hard to derive general arguments about the nature of dynamic distortions because the Lagrange multipliers are 
endogenous and jointly determined at the optimum.
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S(ht−1) =
∞∑

s=0

δsE
[
s(θ̃t+s , q(θ̃t+s |h̃t+s−1)) | h̃t+s ∈ Ht+s |ht−1

]

where Ht |hτ for τ ≤ t is set of all histories of length t whose first τ elements are hτ .
Suppose that the agent reported (ht−1, θj ) truthfully and the principal is committed to deliver 

exactly wi to the agent of type θi at this date. Then, for w = (wL, wH ) ∈ R2, define Q∗
j (w) for 

j = L, H to be

� Q∗
j (w) = max〈U,q〉 S(ht−1, θj )

subject to wi = U(θi |ht−1, θj ) for i = L, H , and

ICL(ht+s),CL(ht+s),CH (ht+s) ∀ ht+s ∈ Ht+s |(ht−1,θj ) ∀ s.

Here Q∗
j (w) is the maximal surplus (and hence maximal expected profit for the principal) gen-

erated by the optimal contract given that the previous period type was θj , and the agent has to be 
provided an expected utility vector exactly equal to w. It is standard practice to show that all the 
history dependence is encoded in the two-dimensional expected utility w and last period’s type 
j ; hence the simple expression Q∗

j (w). Let W be the largest set of w such that the constraints set 

above is non-empty. Again, this set does not depend on ht−1.35

The problem from t = 2 onwards is recursive and it reads as follows:

(RF) Q∗
j (w) = max〈zL,zH,q〉 αj

[
s(θL, qL)+δQ∗

L(zL)
]+(1−αj )

[
s(θH , qH )+δQ∗

H (zH)
]

subject to 〈zL, zH,q〉 ∈ W 2 ×R2+, and

wL − wH ≥ �θqH + δ(2α − 1)(zHL − zHH )

wL ≥ δ
[
αzLL + (1 − α)zLH

]
wH ≥ δ

[
(1 − α)zHL + αzHH

]
where αL = 1 − αH = α, and by (RF ) we mean recursive formulation. Note that q = (qL, qH )

is the allocation rule, zL = (zLL, zLH ) is the expected utility vector of the agent for the next 
period if his type today is θL, and zH = (zHL, zHH ) is the expected utility vector of the agent 
for the next period if his type today is θH . Given these choice variables, the first constraint is the 
incentive constraint for the low cost type, and next two are cash-strapped constraints for the low 
and high cost types, respectively.

At date t = 1 the problem is different for two reasons. First, the belief is equal to the prior, 
and second the contract has not been yet initialized.

(RF0) R∗(v0) = max〈w,zL,zH,q〉 μL

[
s(θL, qL) + δQ∗

L(zL)
]

+ μH

[
s(θH , qH ) + δQ∗

H (zH)
]− Ū

subject to 〈w, zL, zH,q〉 ∈ W 3 ×R2+, and

35 Given the time structure of the problem it can be shown that W is also independent of j , see Claim 1 in the appendix.
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Fig. 3. Recursive domain W and the efficient set E.

Ū = μLwL + μH wH ≥ v0

wL − wH ≥ �θqH + δ(2α − 1)(zHL − zHH )

wL ≥ δ
[
αzLL + (1 − α)zLH

]
wH ≥ δ

[
(1 − α)zHL + αzHH

]
where Q∗

L and Q∗
H are as calculated in (RF).

The recursive domain W is the set of all possible expected utilities that generate themselves 
in an incentive compatible and feasible manner; here it turns out to be the positive orthant above 
the 45 degree line.36 Fig. 3 plots the recursive domain. Next, let E be the largest subset of W
such that the constraints set in � is non-empty when zi ∈ E and qi = qe(θi) for i = L, H . We 
term this the efficient set. E too is self-generating, hence an absorbing subset. Fig. 3 also plots 
the efficient set E; it is characterized by its lowest point we and two rays.37 Intuitively, one can 
note that v = μLwe

L + μH we
H .

With some work, we can also show that the Bellman operator has a unique, continuous 
bounded fixed point Q∗ which is concave, supermodular and continuously differentiable. Im-
portantly the value functions in the sequential and recursive problems coincide.

3.4.1. Shape of the optimal contract
The optimal contract is characterized by the first-order and envelope conditions. These are 

provided in the appendix. Here we geometrically explain the structure of expected utilities that 
arise as part of the optimal contract. First, there exists a threshold wliq

L on the expected utility 
of the low cost type, above which the contract becomes liquid: the Lagrange multiplier on the 
second constraint in (RF), say ρL, is zero for wL ≥ w

liq
L . This threshold lies below the efficient 

level: wliq
L < we

L, see Fig. 4a. We also show that the for any w such that wL ≥ w
liq
L , zL ∈ E, so 

one more low cost type is required to move from the liquid region to efficiency.38

Next, we draw the two level curves that enclose the optimal contract in the inefficient region. 
To understand their geometry, think of simple price theory. Cull the following sub-problem from 
(RF ):

36 Self generation identifies the largest possible set such that given an expected utility vector w in that set, there exists 
some feasible policy choice q, zL, zH such that zL, zH also lie in the set (see Abreu et al. (1990)).
37 Just like W , E too is independent of j .
38 In the benchmark model wliq = 0, therefore, one “good shock” propels the contract into efficiency.
L
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Fig. 4. Constructing the space wherein the optimal contract lies.

max
zL

Q∗
L(zL) s.t. wL = δ [αzLL + (1 − α)zLH ]

This problem can essentially be thought of as the “maximization of a utility function subject to 
a budget set”, where Q∗ represents the utility function, wL the income, α/(1 − α) the relative 
prices and zLL and zLH the consumption bundles. The point of tangency for an interior optimum 
is then given by the condition “marginal rate of substitution = relative prices”, which in our two 
dimensional setup is the following:

DLQ∗
L(zL)

α
= DH Q∗

L(zL)

1 − α
(8)

where Di is the directional derivative of Q∗
j for i = L, H . Similarly, we cull the following sub-

problem from (RF ):

max
zH

Q∗
H (zH) s.t. wH = δ [(1 − α)zHL + αzHH ]

to generate the other point of tangency:

DH Q∗
H (zH)

1 − α
= DLQ∗

H (zH)

α
(9)

Now, as we vary the “incomes”, wL and wH , respectively in both sub-problems, we get what 
is knows as the income offer curve, the locus of all points of tangency as the level of the budget is 
changed. These two loci are denoted by ηL(wL) = 0 and ηH (wH ) − 0 respectively. Fig. 4a plots 
the curves. The positivity of the directional derivatives implies that the both commodities are 
“normal goods” and hence the income offer curves are upward sloping. We show that both curves 
join the origin and we, and that ηH = 0 lies above ηL = 0. The optimal constrained contract 
resides on or in the interior of the curves, a space we call the shell. The shell is characterized by 
binding incentive constraints, β > 0.

Fig. 4b gives an example of the evolution of expected utility. Starting at w, it moves to zL
on the realization of a low cost type, and to zH on the realization of a high cost type. In fact 
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Fig. 5. Number of consecutive low cost types required to reach E.

the example is chosen so that on the realization of two consecutive low cost types, the contract 
becomes liquid (at z′

L), and therefore a third “good shock” makes it efficient.39

Finally, the number of “good shocks” required to make the contract efficient is monotonic in 
the promised utility. Fig. 5 plots n∗(wL) – the number of consecutive low cost realizations re-
quired to reach the efficient region as a function of wL which encodes all the history dependence 
required for n∗. As wL decreases, n∗ can become quite large, in fact n∗ → ∞ as wL → 0.

3.5. Implementation

There are two salient features of an incentive compatible payment schedule that implements 
the optimal allocation. First, as long as the optimal contract is illiquid, delayed payments are 
optimal. Second, at any given history, promised utility is marked up after a “good shock” and 
marked down after a “bad shock”, both in proportion to the history dependent information rent.

The dynamics of payments are as follows. As long we are in the illiquid region, u∗(θL|ht−1) =
u∗(θH |ht−1) = 0, and these are uniquely determined by the binding cash-strapped constraints. If 
we are in the liquid region, u∗(θH |ht−1) = 0 and u∗(θL|ht−1) is chosen to provide the low cost 
type with positive utility according to inductively binding incentive compatibility constraints.40

We define the mechanism formally in the next proposition. For j = L, H , let ve
j = αjw

e
L + (1 −

αj )w
e
H be the promised utility offered to the agent at the lowest point of the efficiency set.

Proposition 3. Suppose v0 ≤ v. Given optimal allocation rule q∗, the following transfer rule 
implements it:

u∗(θH |ht−1) = 0 and u∗(θL|ht−1) = max
{
U∗(θL|ht−1) − δve

L,0
}

∀ ht−1 ∀ t.

Suppose v0 > v. Then q∗ = qe and the following transfers rule implements it: the principal makes 
an initial transfer of η = v0 − v to the agent, and then follows transfers as described above.

39 As Fig. 4b depicts, the realization of a low cost realizations always chooses the expected utility vector in the northeast 
direction on the locus ηL = 0, that is zL and z′

L lie on the curve. Whereas, realization of a high cost type chooses a point 
in the southwest direction in the interior of the shell.
40 U∗ is uniquely defined in the illiquid region, and in the liquid and efficient regions we choose expected utility to 
satisfy ICL(ht−1) as an equality. Once U∗ is fixed, u∗ (and hence p∗) is determined through definitional identities.
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Next, at any given promised utility, defined by v∗(θj |ht−1) = αjU
∗(θL|ht−1, θj ) + (1 −

αj )U
∗(θH |ht−1, θj ), the expected utility increases after a “good shock” and decreases after a bad 

one, both in proportion to the utility spread: U∗(θL|ht−1, θj ) = U∗(θH |ht−1, θj ) + I (ht−1, θj ), 
where

I (ht−1) = �θ

∞∑
s=1

δs−1(2α − 1)s−1q∗(θH |ht−1, θs−1
H ) (10)

measures the difference between expected utility offered to the low and high types respectively 
through the binding incentive constraints.

An intuitive way to think about our mechanism is the following. In the illiquid region, the 
principal only compensates the agent with working capital. Each “good shock” marks up the 
expected utility and each bad one marks it down. In liquid region the principal loosens her purse 
for the first time, by providing u∗(θL|ht−1) > 0, with a push towards efficiency in the event of 
another “good shock”. Once the contract becomes efficient, and hence the information rent of 
the agent is maximal and stationary, the big firm (principal) can simply the take-over the small 
firm (agent) by allowing it to operate “in-house”. The price of the takeover is the expected utility 
of the agent at the time it becomes efficient, viz. we

L. After the take-over the big firm simply 
provides working capital (sans the information rent) every period. When v0 > v, the contract is 
efficient: q∗ = qe. Therefore, the take-over can happen at the inception.

4. Role of financial constraints and persistence in private information

There are at least three conceptual points that emanate from studying this dynamic screening 
model with persistent private information and cash-strapped constraint: (i) the interaction of 
incentive constraint with stronger feasibility restrictions generates novel dynamic distortions, (ii) 
a foundation for when positivity of stage utility can be interpreted as a limited liability restriction, 
and (iii) the impact of persistence in agency frictions on the evolution of the optimal contract and 
economic surplus.

4.1. Interaction of incentives and stronger notion of feasibility

The elegance of capturing real economic frictions in much of mechanism design is embedded 
in the interaction of various incentive and feasibility constraints.41 Fig. 6 exhibits the interac-
tion of incentives and feasibility in our model. Each time cash-strapped constraint for the high 
cost type binds, its interaction with the incentive constraint generates distortions that propagate 
infinitely along the sequence of high types from then on. Dynamic distortions are a sum of two 
components: backloading of payoffs to the extent possible and illiquidity due to financial con-
straints; the latter increases with each “bad shock”, overturning the standard result of decreasing 
distortions.42

41 For example think of how the interaction of three constraints- incentive compatibility, individual rationality and 
budget balance- produces impossibility of efficiency in a bilateral trade setting in Myerson and Satterthwaite (1983).
42 In the benchmark model (described formally in Section 6.1) this interaction happens only in the first period for only 
the first period individual rationality constraint binds. This is because there is no restriction on the extent to which the 
agent’s payoffs can be backloaded. Hence, the propagation of distortions happens once, along the lowest history, whose 
effect mitigates over time leading to a decreasing sequence of distortions.
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Fig. 6. Propagation of distortions.

Moreover, since the cash strapped constraint of the low cost type binds in the illiquid region, 
distortions propagate along consecutive sequence of “bad shocks” even when “good shocks” have 
been realized before it. The cash strapped constraint of the low cost type too interacts with the 
incentive constraints to sustain distortions. It requires an endogenous number of “good shock” 
realizations to overcome the legacy of additive distortions from previous binding constraints.

4.2. Credit constraint versus limited liability

If (PK) binds at the optimum, which it does if v0 ≥ v, then the expected utility of the agent is 
fixed at v0, and from an ex ante perspective the agent is indifferent between the benchmark model 
and the model with the cash strapped constraint. The cash strapped constraint is then simply a 
credit constraint, which shrinks the total surplus and hence the principal’s profit. On the other 
hand if we look at model without (PK), so that all the bargaining power rests with the principal, 
then it is less clear whether the agent “prefers” a situation with or without the cash strapped 
constraint.

We ask: in the principal profit maximizing contract, when is the agent better off? The ex ante 
expected utility of the agent in the two models is given by

v# = μLUb(θL) + μH .0 = P (θ1 = θL)�θ

T∑
t=1

δt−1 (αL − αH )t−1 q#(θH |θ t−1
H )

v∗ = μLU∗(θL) + μH U∗(μH ) = �θ

T∑
t=1

P (θt = θL)q∗(θH |θ t−1
H )

A careful look at the two formulas would reveal that there is no obvious mathematical way of 
ranking v# and v∗. The next result theoretically evaluates the ranking between v# and v∗ for the 
iid and perfectly persistent limits.

Proposition 4. For α ≈ 1
2 , v# < v∗. And ∃ D# and D∗, functions of �\{α, v0}, such that for 

α ≈ 1, v∗ ≷ v# if and only if D# ≶ D∗.

Therefore, the iid model would predict that agent is always does better with financial con-
straints, whereas with persistence, the answer depends on the underlying economic environment. 
We also numerically evaluate both values for a large class of parameters and find that v∗ is higher 
than v#, but not always.43 In a related two period model, Grillo and Ortner (2020) show that with 
serial correlation, the cash-strapped constraint would make the agent worse off.

43 For low values of δ and high values of α and μH , v# is in fact greater than v∗ . The code is available on request.
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In the literature, the positivity of stage utility has been regarded as limited liability, under the 
assumption that it would always make the agent better off. Arguably, this interpretation needs a 
more careful analysis with persistent agency frictions.

4.3. Persistence

Here we present comparative statics with respect to persistence that the modeler would oth-
erwise miss in an iid setting. We start with the long-run distribution of the economic surplus. 
For the general asymmetric Markov chain, the invariant distribution is given by μ∗ = (

μ∗
L,μ∗

H

)
, 

where μ∗
L = αH

1−αL+αH
and μ∗

H = 1 − μ∗
L. The value of total surplus converges in distribution to 

the random variable which takes value Qe
j with the probability μ∗

j , j = L, H , where

Qe
j = αj

[
s(θL, qe(θL)) + δQe

L

]+ (1 − αj )
[
s(θH , qe(θH )) + δQe

H

]
So, the mean and variance of surplus converge respectively to

E
[
Economic Surplus

]→ μ∗
L

s(θL, qe(θL))

1 − δ
+ μ∗

H

s(θH , qe(θH ))

1 − δ
as t → ∞

V
[
Economic Surplus

]→ μ∗
Lμ∗

H

(
(αL − αH )

[
s(θL, qe(θL)) − s(θH , qe(θH ))

]
1 − δ(αL − αH )

)2

as t → ∞

For the symmetric Markov chain, αL = 1 −αH = α, it is easy to see that E 
[
Economic Surplus

]
is independent of α and V

[
Economic Surplus

]
is an increasing function of α. More importantly 

though, we are interested in the path towards efficiency, that is the size of firms that are not yet 
mature. A simulation of a large number of firms is documented in Fig. 7. First, we look at the 
average time it takes for a firm to reach its efficient value. Fig. 7a shows that rate of convergence 
is decreasing in the level of persistence – higher the persistence of technology shocks, smaller is 
the fraction of firms that are efficient at any given point in time. Fig. 7b shows the average size 
of the firm as a function of time. This value is decreasing in persistence, and so is the average 
time it takes for a firm to converge to its efficient value. Therefore, an iid model would predict 
too many mature firms, and too few financially constraints firms while analyzing a cross-section 
of firms in an economy.

Moreover, Fig. 7c documents that variance in firm value is increasing in persistence even in 
the short-run. We have simulated this model for a large number of parameters and we find the 
relationships to be uniform – the hierarchy in values runs across the entire length of time. Why 
does this relationship persist robustly even in the short-run? The intuition comes from Fig. 7d. 
It plots the shell that houses all values of expected utility of the agent in the optimal contract 
(numerical counterpart of the theoretical pictures in Fig. 4). Two factors here determine the evo-
lution of variance in firm value over time as a function of persistence - the Lebesgue measure of 
the shell and the time it takes to reach its north east corner, that is efficiency. For the iid model, 
the shell collapses to a line. As we increase the value of persistence the shell first expands and 
then contracts towards the y-axis. Even as the first factor changes non-monotonically with persis-
tence, the second factor dominates and results in a monotonic relationship. For example, for the 
iid model most firms converge quickly to the efficient value which results is small variance even 
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Fig. 7. Comparative statics with respect to persistence.

in the short-run. For very high persistence, though the shell is shrinking, the time to efficiency in 
large and hence so is the variance in firm values.44

The larger message here is the following. If we were to take our model as a description of 
firm behavior in the economy, then in comparison to the iid model, persistence would (i) predict 
a larger number of firms that are financially constrained, (ii) result in a slower average rate of 
convergence to the state of being unconstrained, and (iii) produce a larger variance in the values 
of both the financially constrained and “mature” firms.

5. Final remarks

This paper motivates the study of financial constraints in dynamic contracting through the 
interaction between persistent private information and cash or liquidity constraints. The agent 

44 It is also interesting to note that irrespective of the level of persistence, variance is a non-monotonic function of time. 
At the inception surplus takes one of two values depending on the first period shock. But as time grows the possible 
sequence of shocks increases exponentially that allow the surplus to take any value in the shell. However, on further 
passage of time, more and more of these contracts become efficient which collapses the variance to its long-run steady 
state value.
24



I. Krasikov and R. Lamba Journal of Economic Theory 193 (2021) 105196
has access to a viable technology marred by agency frictions, and is strapped for cash. The paper 
situates itself in between the literatures on dynamic mechanism design and dynamic financial 
contracting.

In the appendix, we discuss a number of extensions and other results not covered in the main 
text. First, we offer the complete proof of Theorem 1 building on the recursive approach. Sec-
ond, we extend the model to incorporate asymmetric Markov chains and general iid distributions 
for the agent’s type. Third, we look at the continuous time version of our model, and show that 
except points 5 and 8, all other properties from Theorem 1 continue to hold. The two exceptions 
arise because there is no notion of a “time period” in continuous time, so the liquidity and effi-
ciency regions are synonymous. Fourth, we document sufficiency conditions for the validity of 
the relaxed problem approach and offer numerical results for the same. And, fifth, we incorporate 
termination into the model, allowing the principal to end the contract before the start of every 
period.

Theoretically speaking, the paper is limited to the two-types model because it is difficult to 
determine the optimal allocation for more than two Markov types. Global incentive constraints 
generically bind for high persistence, even for the benchmark model (see Battaglini and Lamba 
(2019)). Looking for approximate optimal and easily characterizable contracts is a promising 
approach going forward.

What if the agent is allowed to borrow or save? We conjecture that the set of allocation that 
satisfy incentive compatibility and cash strapped constraints would remain the same, and hence 
the predictions would be unchanged. Whether the agent is allowed to borrow from the principal or 
a third party, as long as this money has to be paid back within the life of contract, our conjecture 
should hold. An analogous result should hold if the agent is allowed to save and draw from those 
savings at any point. Of course, both these observations rely on the linearity of transfers across 
time.45

Now, an alternate way to express the cash-strapped constraint could be pt ≥ C for all t , that 
is payment to the small firm or the agent has to be above a minimum constant amount every 
period. We allow the boundary to move with the supply contract, that is pt ≥ θtqt , both for 
tractability and because it is the standard in the literature.46 Our preliminary results indicate that 
the nature of dynamic distortions would differ under this alternate modeling of cash constraints. 
It is potentially a good question for future research.

Finally, the ideas developed in the paper potentially hold promise for other economically 
meaningful questions such as optimal taxation and double auctions. In optimal taxation, the 
agent is the citizen with privately observed labor productivity. The principal is the government 
seeking to maximize a Pareto-weighted welfare function. Presumably the government cannot 
force the citizens to consume below a certain threshold in any given period. Similarly, in repeated 
transactions in financial markets, a double auction with liquidity constraints involving buyers 
and sellers with privately observed values seems like a reasonable baseline model which could 
generate attractive properties.

6. Appendix

We divide the appendix into twelve subsections - the benchmark model, two period model, 
the sequential approach, followed by the recursive approach, proof of the main theorem, opti-

45 Notes on a proof of the conjecture for a two-type two-period model are available from the authors upon request.
46 When the constraint binds, the principal only supplies payments that covers the cost of production.
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mal limit contract, conceptual interpretation of cash-strapped as limited liability, dynamics of 
payments, general IID model, sufficiency conditions, introducing termination, and the model 
in continuous time. Throughout we will invoke the general model where f (θL|θi) = αi for 
i = L, H . We shall assume the following, their role aptly explained by their title:

(A1) Persistence: αL, 1 − αH ≥ 1/2.
(A2) Limited asymmetry: 1 − αL ≥ αH ≥ (1 − αL)αL.
(A3) Ranking of prior: αH ≤ μL ≤ αL.

(A1) is assumed throughout. (A2) is used in constructing the shell in the recursive approach. (A3) 
ensures that the optimal contract starts in the shell.

6.1. Benchmark: dynamic model without financial constraints

The dynamic mechanism design literature considers models akin to the one studied here with 
the key difference being the agent has access to deep pockets. The problem looks exactly the 
same as (P∗), except that Ci (h

t−1) is replaced by IRi(h
t−1) for i = L, H and for all ht−1. 

Dynamic contracting models of this form have been studied amongst others by Courty and Li 
(2000), Battaglini (2005) and Pavan et al. (2014). In our framework, the optimal allocation, q#, 
is characterized by two facts.

Facts. Let θ t
H ∈ Ht represent the history where each report until period t has been θH . The 

optimal allocation in the benchmark model:

1. becomes efficient forever as soon as the agent becomes a low cost type: q#(θL|ht−1) = qe(θL)

∀ ht−1, and q#(θH |ht−1) = qe(θH ) ∀ ht−1 �= θ t−1
H

2. has decreasing distortions along the constant high cost history: q#(θH |θ t−1
H ) = qe(θH ) −

d(θH |θ t−1
H ), where d(θH |θ t−1

H ) is decreasing in t .

Battaglini (2005) terms these generalized no distortion at the top and vanishing distortions at 
the bottom, respectively. Drawing from equation (∗), r(ht−1) = 0 for all ht−1 �= θ t−1

H . Once a 
“good shock” arrives, the marginal cost of incentive provision becomes zero. On the other hand, 
d(θH |θ t−1

H ) decreases over time since the marginal cost of incentive provision decreases along 
the history of constant high costs.

Formally, consider a relaxed problem where the principal chooses to maximize S −
[μLU(θL) + μH U(θH )] subject to ICL(ht−1) and IRH (ht−1) ∀ ht−1, ∀ t . All constraints can 
be assumed to hold as an equality, and it can be easily shown that the solution to the relaxed 
problem is globally optimal.

Inductively applying the binding ICL(θ t−1
H ) gives us

U(θL) = U(θH ) + �θ

T∑
t=1

δt−1(αL − αH )t−1q(θH |θ t−1
H )

Substituting back into the objective function, we get that

q#(θL|ht−1) = qe(θL) ∀ht−1, ∀ t, and q#(θH |ht−1) = qe(θH ) ∀ht−1 �= θ t−1, ∀ t
H
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q#(θH |θ t−1
H ) = Q

(
(1 − λ)

μL

μH

(
αL − αH

1 − αH

)t−1
)

where λ is the Lagrange multiplier on (PK) satisfying (1 − λ)U#(θH ) = 0 with complemen-
tary slackness. It is routine to show that λ ∈ [0, 1], and λ < 1 if and only if v0 ≤ v# :=
�θ

T∑
t=1

δt−1(αL − αH )t−1qe(θH ).

The key economic force to take note here is that the feasibility constraint binds only once
– IRH is the only individual rationality constraint that binds at the optimum. Therefore, multi-
ple prices implement the optimal allocation with a restriction that first period expected utilities, 
U(θL) and U(θH ), are uniquely pinned down. Esö and Szentes (2017) point out that these mod-
eling choices lead to a kind of irrelevance of dynamics. Since incentives and feasibility interact 
only at the start of the contract, distortions are akin to the static model and are only augmented 
by marginal “innovations” to agent types. Our paper shows that when the agent is constrained on 
cash, information rents and hence distortions have markedly different time structure.47

6.2. Two period model

In this section, we prove Proposition 1 and its corollaries. We first establish the set of binding 
constraints for the relaxed problem. For the mechanism 〈U,q〉, the constraints can be written as:

ICL : U(θL) ≥ U(θH ) + �θq(θH ) + δ(αL − αH ) [u(θL|θH ) − u(θH |θH )]

Ci : U(θi) = u(θi) + δ [(αiu(θL|θi) + (1 − αi)u(θH |θi)]

and u(θi) ≥ 0 for i = L,H

ICL(θi) : u(θL|θi) ≥ u(θH |θi) + �θq(θH |θi) for i = L,H

CH (θi) : u(θH |θi) ≥ 0 for i = L,H

Notice that the first-period constraints are relaxed when u(θH |θi) and u(θL|θi) − u(θH |θi) are 
decreased. Therefore, the second-period constraints can be assumed to hold as an equality.

Let μLβ and μLη be the Lagrange multipliers on ICL and CL, respectively. As in the bench-
mark model, λ is the Lagrange multiplier on (PK). Since the problem is concave, the optimal 
allocation is described by

q∗(θL) = qe(θL), and q∗(θH ) = Q
(

β
μL

μH

)

q∗(θL|θL) = qe(θL), and q∗(θH |θL) = Q
(

η
αL

1 − αL

)

q∗(θL|θH ) = qe(θL), and q∗(θH |θH ) = Q
(

β
μL

μH

(
αL

1 − αH

)
+ (1 − λ)

αH

1 − αH

)
such that β +η = 1 −λ and u∗(θH )[μLβ +μH (1 −λ)] = 0. Clearly, λ ∈ [0, 1], and λ < 1 if and 

only if v0 ≤ v∗ = �θ
2∑

t=1
δt−1P (θt = θL)qe(θH ).

47 It is possible for distortions to increase over time in dynamic mechanism design without financial constraints when 
the private information is regarding the parametrization of the Markov process itself, see Boleslavsky and Said (2013).
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We claim that ICL can be assumed hold as an equality. Suppose that ICL is satisfied as a 
strict inequality at the optimum, then β = 0 and q∗(θH ) = qe(θH ) ≥ q∗(θH |θL). It follows that 
CL is also satisfied as a strict inequality, η = 1 − λ = 0. Therefore, the optimal contract is simply 
the efficient contract. Since transfers are not uniquely pinned down, we can pick one possible 
implementation of the efficient contract where ICL holds as an equality.

Finally, we prove Corollary 1. Part 1 is equivalent to q∗(θH |θL) ≥ q∗(θH |θH ) which is sat-
isfied trivially no matter if CL binds or not. Part 2 says that S∗(v0) = R∗(v0) + max{v∗, v0} is 
non-decreasing, and strictly increasing on [v∗, v∗], where v∗ is total expected utility for the agent 
when (PK) is ignored. For v0 ≤ v∗, (PK) does not bind and S∗(v0) = S∗(v∗). On other hand, (PK) 
binds whenever v0 > v∗. Since R∗ is concave, the set of its sub-differentials is non-empty and 
consists of all −λ supporting the optimum. Recall that λ < 1 for v0 < v∗ implying that S∗ is 
strictly increasing on [v∗, v∗].

6.3. Sequential approach with T = ∞

The set of constraints in (RP∗) can be enlisted as follows:

ICL(ht−1) : U(θL|ht−1) ≥ U(θH |ht−1) + �θq(θH |ht−1)

+ δ(αL − αH )
[
U(θL|ht−1, θH ) − U(θH |ht−1, θH )

]
Ci (h

t−1) : U(θi |ht−1) ≥ δ
[
αiU(θL|ht−1, θi) + (1 − αi)U(θH |ht−1, θi)

]
for i = L,H

As in the two period problem, each CH(ht−1) with ht−1 �= ∅ can be assumed to hold as an 

equality. In addition, CH binds for v0 < v∗ = �θ
∞∑
t=1

δt−1P (θt = θL)qe(θH ), and the optimal 

allocation is efficient for v0 ≥ v∗.
Finally, the incentive compatibility constraints hold as an equality at the optimum. We show 

this within the recursive approach introduced in the next section, see the proof of Claim 5, Part 3. 
Using the set of binding constraints, we can write CL(ht−1) in terms of quantities:

CL(ht−1) :
∞∑

s=0

δspsq(θH |ht−1, θs
H ) ≥

∞∑
s=1

δspsq(θH |ht−1, θL, θs−1
H )

where ps =P(θt+s = θL|θt = θL) = αH +(1−αL)(αL−αH )s

1−αL+αH
.

In Claim 4, we show that the optimal contract is interior, and therefore it can be characterized 
using the Lagrangian method with multipliers in l1. So, letting δt−1η(ht−1) be the multiplier on 
CL(ht−1), we get the optimal allocation for v0 ≤ v∗:

q∗(θL|ht−1) = qe(θL) ∀ht−1, ∀ t

q∗(θH |ht−1, θL, θs−1
H )

= Q
(

η(ht−1)
ps

P (ht−1θLθs
H )

−
s−1∑
τ=0

η(ht−1, θL, θτ
H )

ps−1−τ

P (ht−1θLθs
H )

)
∀ht−1, ∀ t

q∗(θH |θ t−1
H ) = Q

(
(1 − λ)

P (θt = θL)

P (θ t
H )

−
t−1∑
τ=0

η(θτ
H )

pt−1−τ

P (θ t
H )

)

where λ is the multiplier on (PK).
28



I. Krasikov and R. Lamba Journal of Economic Theory 193 (2021) 105196
One can immediately note that for positive values of η, distortions are pervasive. A binding 
CL(ht−1) leaves a legacy of distortions on all high cost quantities that follow - q∗(θH |ht−1, θL,

θs−1
H ). It is also important to note that distortions are a function of shadow prices as measured 

from the last time a low cost type was realized. However, it is hard to drive home general argu-
ments about the nature of dynamic distortions because η s are endogenous and jointly determined 
at the optimum.

6.4. Recursive approach

In this section, we convert (RP∗) into its recursive avatar. The recursive formulations have 
been defined as (RF ) and (RF0) in Section 3.4. First, (RF ) can be restated for the general 
Markovian framework as follows:

(RF) Q∗
j (w) = max〈zL,zH ,q〉 αj

[
s(θL, qL)+δQ∗

L(zL)
]+ (1−αj )

[
s(θH , qH )+δQ∗

H (zH)
]

subject to 〈zL, zH,q〉 ∈ W 2 ×R2+, and

wL − wH ≥ �θqH + δ(αL − αH )(zHL − zHH )

wL ≥ δ
[
αLzLL + (1 − αL)zLH

]
wH ≥ δ

[
αH zHL + (1 − αH )zHH

]
(RF0) can similarly be rewritten for the general model.

The rest of the section is divided into six claims. In Claims 1 and 2 we describe the recursive 
domain and the efficiency set, respectively. Next in Claim 3, we show that the optimal contract 
exists and the recursive formulation can be used to obtain it. Then, we discuss several standard 
properties of the value function in Claim 4. Finally, Claims 5 and 6 form the core of our analysis; 
the former constructs the shell introduced in the main text and the latter describes the behavior 
of the optimal contract within the shell, and its transition to the efficiency set.

Claim 1 (Recursive domain). W = {w ∈R2+ : wL ≥ wH }.

Proof. The cash-strapped constraint implies W ⊆ R2+. It is easy to see that {w ∈ R2+ : wL ≥
wH } ⊆ W : fix w such that wL ≥ wH ≥ 0, and let zLL = zLH = wL, zHL = zHH = wH and 
qH = qL = 0., then w ∈ W . We prove the converse by iterative approximations of W .

Relax the constraints set in � ignoring the low cost cash-strapped constraints, and let W̃ be 
the set of w ∈R2+ such that this constraints set is non-empty. Of course, W ⊆ W̃ and W̃ does not 
depend on ht = (ht−1, θj ). Notice that it suffices to consider q = 0 in order to determine W̃ .

Denote wi = U(θi |ht ), zik = U(θk|ht , θi) for i, k = L, H . First, ignore all constraints at date 
t + 2 and later, but zi ∈ R2+. So, we are left only with zi ∈R2+ and two date t + 1 constraints:

wL − wH ≥ δ(αL − αH )(zHL − zHH )

wH ≥ δ[αH zHL + (1 − αH )zHH ] (11)

Let W̃0 be the set of w ∈ R2+ such that there exist zH, zL ∈ R2+ satisfying Equation (11). Then, 
define recursively W̃l as a set of w ∈ R2+ such that there exist zH, zL ∈ W̃l−1 satisfying Equation 
(11). In other words, W̃l is found by ignoring all constraints at date t + l + 2 and later, but 
U(θt+l+2|ht+l+1) ≥ 0 ∀θt+l+2 and ht+l+1 ∈ Ht+l+1|ht . We claim that W̃l ⊆ W̃l−1 for any l and 
W̃ ⊆⋂+∞

W̃l = {w ∈R2 : wL ≥ wH }.
l=0 +
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Fix a ∈ [0, 1), then let W̃ old
a = {w ∈ R2+ : wL ≥ awH } and define W̃new

a = {w ∈ R2+ :
∃(zH, zL) ∈ W̃ old

a × W̃ old
a s.t. (11)}. Notice that w′ ∈ W̃new

a if and only if there exists w with 
w′

L = wL, w′
H ≥ wH = δ

[
αH a + (1 − αH )

]
zHH and wL − wH ≥ δ(αL − αH )(a − 1)zHH . It 

follows that W̃new
a = {

w ∈R2+ : wL ≥ [
1 − (αL−αH )(1−a)

αH a+(1−αH )

]
wH

}
.

So, define a0 = 0, al = 1 − (αL−αH )(1−al−1)
αH al−1+(1−αH )

, then W̃l = W̃ old
al

. The claim follows from al−1 <

al < 1 for any l and al →l→∞ 1. �
Now, we look at the efficiency set. Formally, for j = L, H , Qj(w) < Qe

j ∀w ∈ W − E and 
Qj(w) = Qe

j ∀w ∈ E where Qe solves

Qe
j = αj

[
s(θL, qe(θL)) + δQe

L

]+ (1 − αj )
[
s(θH , qe(θH )) + δQe

H

]
To characterize the set, define κ = �θqe(θH )

1−δ(αL−αH )
, (1 − δ)we

H = δαH κ and we
L = we

H + κ . Clearly, 
{w ∈ W : wH ≥ we

H and wL ≥ wH + κ} ⊆ E.

Claim 2 (Efficiency set). E = {w ∈ W : wH ≥ we
H and wL ≥ wH + κ}.

Proof. The proof is similar to Claim 1, see the online appendix for details. �
Remark 1 (Liquidity). Clearly, if there is some zi ∈ E satisfying the constraints, then this zi

is optimal. It is easy to see that zH ∈ E if only if w ∈ E. Moreover, zL ∈ E if and only if 
wL ≥ w

liq
L = δ[αLwe

L + (1 − αL)we
H ] < we

L, because we is the smallest point of the efficiency 
set. So, a transition to efficiency is possible from outside of E, and it requires a “good shock” 
provided that wL ≥ w

liq
L . We shall show in Claim 6 that the low cost type is liquid if and only if 

it is possible to transit to efficiency.

To make our next claim formal, we need several auxiliary objects. Let (ZL(w),ZH (w),Q(w))

be the set of maximizers in the problem (RF ) given w and θj . Importantly, this set is independent 
of θj , because of the structure of the problem. The policy correspondence is a correspondence 
which maps w into (ZL(w),ZH (w),Q(w)). We say that a contract is generated from the policy 
correspondence when for i, k = L, H and ∀ht , ∀t

U(θk|ht , θi) ∈ Zik

(
U(θL|ht ),U(θH |ht )

)
q(θi |ht ) ∈ Qi

(
U(θL|ht ),U(θH |ht )

)
Claim 3 (Validity of the recursive approach).

1. There exists a unique continuous bounded function satisfying the Bellman equation in (RF).
2. The policy correspondence is non-empty, compact-valued and upper hemicontinuous.
3. A contract is generated from the policy correspondence if and only if it solves � ∀ht , ∀t , with 

w = (
U(θL|ht ),U(θH |ht )

)
.

4. Value functions in � and (RF ), and in (RP∗) and (RF0) coincide.

Proof. See Exercises 9.4, 9.5 and 9.7 of Stokey et al. (1989). �
The next claim establishes standard properties of the value function such as concavity, super-

modularity and differentiability.
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Claim 4 (Properties of the value function).

1. Each Q∗
j is concave.

2. Each Q∗
j is supermodular.

3. Each Q∗
j is continuously differentiable on int (W) with

lim
wL→wH

DLQ∗
j (w) = ∞ ∀ wH and lim

wH →0
DH Q∗

j (w) = ∞ ∀ wL �= 0

4. Each Q∗
j is strictly concave in wL and wH on

H = {w ∈ int (W) : DQ∗
L(w) � 0 and DQ∗

H (w) � 0}

Proof. See the online appendix. �
Now, we derive the optimality conditions which turn out to be useful for our characterization 

of the optimal contract. Let (1 −αj )β , αjρL and (1 −αj )ρH be the Lagrange multipliers for the 
respective constraints in (RF ). Let w ∈ int (W). Since the optimum is interior by Claim 4, it is 
characterized by the following first-order conditions:

DLQ∗
L(zL) = αLρL

DH Q∗
L(zL) = (1 − αL)ρL

DLQ∗
H (zH ) = αH ρH + (αL − αH )β

DH Q∗
H (zH ) = (1 − αH )ρH − (αL − αH )β

Dqs(θH , qH ) = �θβ

(12)

In addition, the following envelope conditions are satisfied:

DLQ∗
L(w) = αLρL + (1 − αL)β

DH Q∗
L(w) = (1 − αL)(ρH − β)

DLQ∗
H (w) = αH ρL + (1 − αH )β

DH Q∗
H (w) = (1 − αH )(ρH − β)

(13)

At the initial date, the problem is different. Let λ be the multiplier on (PK) in (RF0), and μH β , 
μLρL and μHρH be the other multipliers. The first-order conditions with respect to zL, zH and 
qH are the same as in Equation (12). The extra first-order conditions are

μLρL + μH β = μLλ

μH (ρH − β) = μH λ
(14)

We proceed by characterizing the shell, the optimal contract and its dynamics. The shell is 
extremely important, because the optimal contract always lies in this set (Claim 6), so we start 
with it. As in the main text, define ηj(w) = (1 −αj )DLQ∗

j (w) −αjDH Q∗
j (w) for j = L, H and 

w ∈ int (W). Formally, the shell is defined as:

B = {w ∈ W ∩ (0,we
L) × (0,we

H ) : ηL(w) ≤ 0 ≤ ηH (w)}
We focus on the case with αL �= αH , the generalized IID model is discussed in the next 

section. The following claim establishes that the shell looks like the shaded area in Fig. 4. It 
is the intersection of epigraph and hypograph of two strictly increasing, continuous functions 
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connecting 0 and we . The shell has a non-empty interior and it lies above the line connecting 0
and we .

Claim 5 (Shape of the shell).

1. For j = L, H and ∀wH ∈ (0, we
H ), ∃ unique w

j
L(wH ) ∈ (0, we

L) such that ηj (w
j
L(wH ), wH )

= 0.
2. Each wj

L is continuous and strictly increasing with

lim
wH →0

w
j
L(wH ) = 0 and lim

wH →we
H

w
j
L(wH ) = we

L.

3. wH
L > wL

L on (0, we
H ).

4. wL
L > δαH wH

1−δ(1−αH )
on (0, we

H ).

Proof. Parts 1 and 2. First, {wL ∈ (wH , we
L] : ηj (w) = 0} �= ∅ for any wH ∈ (0, we

H ), because 
ηj is continuous in wL with lim

wL→wH

ηj (w) = +∞ and ηj (w
e
L, wH ) ≤ 0 by Claim 4.

Next, we want to show that B ⊆ H . If w ∈ B with DLQ∗
L(w) > 0, then DH Q∗

j (w) > 0 for 
j = L, H by the definition of ηL. Consider DLQ∗

L(w) = 0 which imply ρL = β = 0. Clearly, all 
the Lagrange multipliers can not be zero at the same time for w /∈ E as it implies DQ∗

j (w) = 0
for j = L, H . Then, DQj(zj ) = 0 for j = L, H . Iterating forward, conclude that w must be in 
E, a contradiction. So, ρH > 0 and ηH (w) < 0, as a result w /∈ B .

Given that w ∈ H , each Qj is strictly concave in its coordinates. Uniqueness, continuity and 
strict monotonicity of wj

L is due to strict concavity and supermodularity of the value function.
Part 3. Notice that ηj (w) = αj (1 − αj )(ρL − ρH ) + (1 − αj )β by Equation (13), thus

ηH (w)

αH (1 − αH )
= ηL(w)

αL(1 − αL)
+ (αL − αH )β

αLαH

(15)

So, ηH (w) > ηL(w) whenever β > 0, and it suffices to establish β > 0 in B to prove this part of 
the claim.

For any w ∈ B with wL ≥ w
liq
L = δ[αLwe

L + (1 − αL)we
H ], there exists zL ∈ E satisfying the 

cash-strapped constraint of the low cost type. So, ρL = 0 and β > 0, because w ∈ B ⊆ H by the 
first part of the claim above.

It remains to look at w ∈ B with wL < w
liq
L . Consider w0 such that ηH (w0) = 0 and w0

L ≥
w

liq
L . Then, ηL(w0) < 0 by Equation (15). There exists w1 such that ηL(w1) = 0 and w1

H = w0
H , 

w1
L < w0

L.
By Lemma in the online appendix, β(w′

L, wH ) ≥ β(wL, wH ) for any wL > w′
L > wH > 0. In 

particular β(w1) ≥ β(w0) > 0. Notice that ηH (w1) > 0 by Equation (15). Thus, there exists w2

such that ηH (w2) = 0 and w2
H < w1

H , w2
L = w2

L. By strict concavity on H , ηL(w2) < 0, implying 
that β(w2) > 0 by Equation (15). Iterating, get that β > 0 on {w ∈ (0, we

L) × (0, we
H ) : ηL(w) =

0} ⊆ B which implies β > 0 on B by Lemma in the online appendix.
Part 4. Finally, we argue that wL

L > δαH wH

1−δ(1−αH )
when αL �= αH and (A2) holds.

Take w ∈ W with ηL(w) ≤ 0, then αL(ρL −ρH ) +β ≤ 0 and (A2) implies that DLQ∗
H (zH ) −

DLQ∗
H (w) = αH (ρH − ρL) − (1 − αL)β ≥ 0. In addition, assume that β > 0, then that 

DH Q∗
H (zH ) − DH Q∗

H (w) = (1 − αL)β > 0. So, w �= zH and they are ordered by strict con-
cavity and supermodularity. Clearly, the cash strapped constraint for the high type can be 
assumed to hold as an equality which implies that wH �= δ[αH wL + (1 − αH )wH ]}. By the 
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previous part of the claim, our argument implies that B and {w ∈ (0, we
L) × (0, we

H ) : wH =
δ[αH wL + (1 − αH )wH ]} do not intersect. Even more, if the shell lies below the line connecting 
0 and we , then β = 0 on this line.

Next, suppose that wH
L < δαH wH

1−δ(1−αH )
on (0, we

H ). And, take w on the line, wH = δ[αH wL +
(1 − αH )wH ]. Since β = 0, it must be the case that qH = qe(θH ) and

wL − wH ≥ �θqe(θH ) + δ(αL − αH )(zHL − zHH )

As w tends to 0 along the line, zH also tends to 0 by the cash strapped constraint. The above 
equation must be violated at some w close to 0, therefore the shell can not lie below the line. �

Our last claim points out the optimal contract is initialized in the shell, and it stays within 
the shell until it reaches E. Moreover, while in the shell, a good/bad shock strictly increases/de-
creases w in each coordinate, the allocation is monotonically decreasing along the sequence of 
θH ’s.

Claim 6 (Optimal contract).

1. The optimal contract is initialized at w ∈ B such that wL = wL
I (wH ) where wL

I : (0, we
H ) →

(0, we
H ) is a continuous, strictly increasing function wL

I : (0, we
H ) → (0, we

L) such that wH
L ≥

wI
L ≥ wL

L on (0, we
H ).

2. ∀w ∈ B , zL � w ≥ zH with wH > zHH and wH > zHL if ηL(w) < 0.
3. zL ∈ B whenever w ∈ B , wL < w

liq
L , and zL ∈ E whenever w ∈ B , wL ≥ w

liq
L .

4. zL(w) ≥ zL(w′) whenever w, w′ ∈ B and w′
L ≤ wL, w′

L ≤ w
liq
L .

5. zH ∈ B whenever w ∈ B .
6. ∀w ∈ B , qH (w) ≥ qH (zH ) with a strict inequality when ηL(w) < 0.
7. ∀w ∈ B , qH (zL) ≥ qH (w).

Proof. Part 1. By equation (14) the contract is initialized at μL(ρL − ρH ) + β = 0. Existence of 
wL

I and its properties can be easily seen by the same argument as in the first two parts of Claim 5. 
Then, by Assumption (A3) and Equation (15), αL(ρL −ρH ) +β ≤ 0 ≤ αH (ρL −ρH ) +β which 
implies that wH

L ≥ wI
L ≥ wL

L on (0, we
H ).

Part 3. Clearly, zL ∈ H is such that ηL(zL) = 0 if w ∈ B , but wL < w
liq
L . And, zL ∈ B , 

because H ⊆ (0, we
L) × (0, we

H ). Notice that we ∈ int (W) and DQ∗
j (w

e) = 0 by construction. 
For w ≥ we and w /∈ E, there exists (w′

L, wH ) ∈ E with w′
L > wL. Hence, each DLQ∗

j (w) ≤
0 = DLQ∗

j (w
′
L, wH ) by concavity and supermodularity. And, if wL ≥ we

L and wH ∈ (0, we
H ), 

then DLQ∗
j (w) ≤ 0 = DLQ∗

j (w
e). The case with wH ≥ we

H and wL ∈ (0, we
L) is similar.

On the other hand, there exists zL ∈ E satisfying the cash-strapped constraint of the low cost 
type ∀w ∈ B with wL ≥ w

liq
L .

Part 2. By the previous part of the claim, zL ∈ E whenever w ∈ B , wL ≥ w
liq
L , thus zL � w. 

Now, Take any w ∈ B and wL < w
liq
L . In this case, ρL > 0 and the cash strapped constraint for 

the low cost type holds as an equality:

wL = δ[αLzLL + (1 − αL)zLH ] < zLL

where we used zL ∈ int (W) and δ < 1. Given that wL
L is strictly increasing (see Claim 5), zLH �

wH must hold as well.
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Next, we show that w ≥ zH and wH > zHH . In the proof of Part 4 of Claim 5, we argue that 
if w ∈ B , DLQ∗

H (zH ) ≥ DLQ∗
H (w) and DH Q∗

H (zH ) > DH Q∗
H (w). This implies that w �= zH

are ordered by strict concavity and supermodularity. Using the fact that w lies above the line 
connecting 0 and we, and the cash strapped constraint:

0 ≤ αH (wL − zHL) + (1 − αH )(wH − zHH )

Clearly, w ≥ zH with wH > zHH is the only possible choice. The assertion could be strengthen 
to w � zH when ηL(zH ) < 0 as DLQ∗

H (zH ) > DLQ∗
H (w).

Part 4. Take w, w′ ∈ B with w′
L ≤ wL, w′

L ≤ w
liq
L and suppose that zL < z′

L. By the third part 
of this claim, the low type cash-strapped constraint binds for both w, w′. Also, Equation (12)
yields ηL(zL) = ηL(z′

L) = 0 implying that zL > z′
L, because wL

L is strictly increasing as shown 
in Claim 5. This is a clear contradiction.

Part 5. First, we argue that the level curves of ηH in (0, we
L) ×(0, we

H ) cross {w ∈ B : ηL(w) =
0} at most once. Suppose not, namely for some w �= w′ within the square, ηH (w) = ηH (w′). 
Then, β(w) = β(w′) = ρL(w) − ρH (w) = ρL(w′) − ρH (w′) = 0, which is a contradiction to the 
last part of Claim 5.

Now, take w ∈ B with ηL(w) = 0. By Equation (15), and the second assumption, ηH (w) =
1−αH

αL
ηH (zH ) ≥ ηH (zH ) = (αL − αH )β ≥ 0. From ηH (w) ≥ ηH (zH ), the fact that the level 

curves of ηH cross at most once and w ≤ zH , conclude zH ∈ B . The general case is implied by 
monotonicity of β (Lemma in the online appendix) and the previous result.

Part 6. We have shown above that the optimal contract lies in the shell with 1−αH

αL
ηH (zH ) ≥

ηH (w) and ηH (zH ) = (αL − αH )β ≥ 0. Iterating forward on θH , 1−αH

αL
β(zH ) ≥ β(w). Using 

the first-order condition Dqs(θH , qH ) = �θβ , and strict concavity of s(θH , ·), conclude that 
qH (zH ) ≤ qH (w). For ηL(w) < 0, the result can be easily strengthen to qH (zH ) < qH (w), be-
cause 1−αH

αL
ηH (zH ) > ηH (w).

Part 7. Clearly, a level curve of ηH can be described by an increasing, continuous function 
starting at 0 (see the first part of Claim 5). This function must be strictly increasing on B .

In the previous part, we showed that the level curves of ηH cross {w ∈ B : ηL(w) = 0} at 
most once. Now, as we are moving along {w ∈ B : ηL(w) = 0} from 0 to we, ηH must be strictly 
decreasing. To see this, take w � w′ ∈ B with ηL(w) = ηL(w′) = 0. Then, {w̃ ∈ B : ηH (w̃) =
ηH (w)} is to the left of {w̃′ ∈ B : ηH (w̃′) = ηH (w′)}. Consider the section at w′

L, strict concavity 
yield the desired result.

We have shown that ηHw is strictly decreasing as we are move towards we. By equation (15), 
β is strictly decreasing, thus qH is strictly increasing (see equation (12)). �
6.5. Main result

Theorem 1 translates the recursive characterization into sequential notations. By Claim 3, the 
contract is optimal if it is generated from the police correspondence and the first period choice 
of w solves (RF0). Parts A-D of Theorem 1 are completely established in the Claims above. We 
briefly describe the connection. The optimal quantity is downward distortion from equation (12): 
Dqs(θH , qH ) = �β and fact that β > 0 in B , which establishes part 1. Parts 2 and 3 follow from 
6 and 7 of Claim 6. Part 4 follows from 2 of Claim 6. Part 5 follows from 3 of Claim 6. Part 6 of 
follows from the way set E is constructed in Claim 2. Parts 7 and 8 are implied by 2, 3 and 4 of 
Claim 6.

It is left to be shown that the optimal contract converges to the efficient allocation, that is 
part E. The first part of Claim 6 says that the optimal contract is initialized in B ⊆ int (W). 
34



I. Krasikov and R. Lamba Journal of Economic Theory 193 (2021) 105196
Let D∗ = (DL + DH ); equations (12) and (13) imply that the stochastic process D∗Q∗
j is a 

non-negative martingale:

D∗Q∗
L(z) = αLD∗Q∗

L(zL) + (1 − αL)D∗Q∗
H (zH ) ≥ 0

D∗Q∗
H (z) = αH D∗Q∗

L(zL) + (1 − αH )D∗Q∗
H (zH ) ≥ 0

So, the Martingale convergence theorem delivers that D∗Q∗
j converges almost surely. Therefore, 

the Lagrange multipliers are uniquely pinned by the limits through Equation (13). Clearly, w
converges to a point in E, hence q∗(θi |ht−1) converges to qe(θi) almost surely.

6.6. Optimal limit contract

In this section, we prove Proposition 2. We shall invoke the sequential approach discussed 
in Section 6.3. Since we are interested in the limit result as the Markov matrix approaches the 
identity matrix, we will consider the symmetric Markov chain: αH = 1 − αL = α.

Recall that CL(ht−1) could be expressed as:

∞∑
s=0

δspsq(θH |ht−1, θs
H ) ≥

∞∑
s=1

δspsq(θH |ht−1, θL, θs−1
H )

where ps = 1+(2α−1)s

2 . Let δt−1P (ht−1θL)(1 − α)η(ht−1) be the Lagrange multiplier on this 
constraint, then the optimal allocation takes the following form

q∗(θH |θs
H ) = Q

(
(1 − λ)

1 + (μL − μH )(2α − 1)s

2μH αs
− ps

αs

μL

μH

(1 − α)η

−
s∑

j=1

ps−j

αs−j

(1 − α)2

α
η(θ

j
H )

)
, s ≥ 0

q∗(θH |ht−1, θL, θs−1
H ) = Q

(
ps

αs

αη(ht−1) − ps−1

αs−1
αη(ht−1, θL)

−
s−1∑
j=1

ps−1−j

αs−1−j

(1 − α)2

α
η(ht−1, θL, θ

j
H )

)
, s ≥ 1

where λ is the Lagrange multiplier on (PK).

Fixing λ, q∗(θH |θs
H ) −−−→

α→1
Q 
(
(1 − λ)

μL

μH

)
and q∗(θH |ht−1, θL, θs−1

H ) −−−→
α→1

Q
(
η(ht−1) −

η(ht−1, θL)
)
. This implies that agent’s ex ante utility converges to �θμL

1−δ
Q 
(
(1 − λ)

μL

μH

)
. There-

fore, λ = 0 for any v0 ≤ v∗ = �θμL

1−δ
Q 
(

μL

μH

)
. And, for v0 ∈ (v∗, v∗], λ is uniquely pinned down 

by the (PK) where v∗ = �θμL

1−δ
qe(θH ):

λ = 1 − μH

μL

Q−1
(

(1 − δ)v0

�θμL

)
Notice that the limiting allocation does not depend on the number of θH ’s since the last θL. 

Using the cash-strapped constraint, obtain that
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Q
(

(1 − λ)
μL

μH

)
≥ δQ

(
η(θs

H ) − η(θs
H , θL)

)
, s ≥ 0

Q
(
η(ht−1) − η(ht−1, θL)

)
≥ δQ

(
η(ht−1, θL, θs−1

H ) − η(ht−1, θL, θs−1
H , θL)

)
, s ≥ 1

First of all, we argue that ζ(ht−1) := η(ht−1) − η(ht−1, θL) ≥ 0, and it holds with as an equality 
if and only if η(ht−1) = 0. The first part and the “if” direction follow from the main theorem 
which says that the optimal distortions are downwards. Considering the “only if” direction, let 
ζ(ht−1) = 0. Then, Q (0) > δQ 

(
ζ(ht−1, θL)

)
which leads to η(ht−1, θL) = 0 by the complimen-

tary slackness. So, we could use η interchangeably with ζ as our set of Lagrange multipliers.

Next, we explicitly solve for ζ . To begin, notice that ζ(θs
H ) appears only in Q 

(
(1 − λ)

μL

μH

)
≥

δQ 
(
ζ(θs

H )
)

and Q 
(
ζ(θs

H )
) ≥ δQ 

(
ζ(θs

H , θL)
)
. Since higher ζ(θs

H ) relaxes the latter constraint, 

Q 
(
ζ(θs

H )
) = min

{
qe(θH ), 1

δ
Q
(
(1 − λ)

μL

μH

)}
. By induction, ζ(ht−1) is constant on ht−1 with 

the same number of θL’s. Then, the exact expression of dn are obtained using complimentary 
slackness.

6.7. Credit constraint versus limited liability

Now, we show Proposition 4. Our argument is based on calculations done in the previous 
section. Since (PK) is ignored, it is akin to assuming v0 = 0. For α = 0.5, using the results of 
Sections 6.3 and 6.5, v# = �θμLq#(θH ) ≤ �θμLq∗(θH ) < v∗, because q∗ � 0.

The case of α ≈ 1 is more delicate. Clearly, lim
α→1

v# = lim
α→1

v∗. Thus, we need to compare the 

rates at which v# and v∗ converge. Direct calculations yield that the derivate of v# evaluated at 
α = 1 is proportional to D#:

D# := d

dα

v#

�θμH

∣∣∣∣∣
α=1

= δ

(1 − δ)2

[
2

(
μL

μH

)
Q
(

μL

μH

)
+
(

μL

μH

)2

Q′
(

μL

μH

)]

By the implicit function theorem, the derivative of q∗ at α = 1 is well-defined. Using the 
expression for q∗:

d

dα
q∗(θH |θs

H )

∣∣∣∣∣
α=1

= Q′
(

μL

μH

)(
μL

μH

d1 − s

)
, s ≥ 0

Totally differentiating v∗, obtain that its derivate evaluated at α = 1 is proportional to D∗:

D∗ := d

dα

v∗

�θμH

∣∣∣∣∣
α=1

= δ

(1 − δ)2

[(
μL − μH

μH

)
Q

(
μL

μH

)
−
(

μL

μH

)
Q′
(

μL

μH

)]

+ 1

1 − δ

(
μL

μH

)2

Q′
(

μL

μH

)
d1

Clearly, for α ≈ 1, v∗ > v# if and only if v# is strictly steeper than v∗ that is D∗ < D#. The 
case of v∗ < v# is similar.
36



I. Krasikov and R. Lamba Journal of Economic Theory 193 (2021) 105196
6.8. Dynamics of payments

Define the promised utility of the agent to be:

v∗(θj |ht−1) = 1

δ

[
U∗(θj |ht−1) − u∗(θj |ht−1)

]
and the utility spread as:

I (ht−1) = �θ

∞∑
s=1

δs−1(αL − αH )s−1q∗(θH |ht−1, θs−1
H )

The dynamics of payments are as follows. Fix the optimal allocation rule and initial promised 
utility v0.48 Solving the promised utility identity and the “envelope formula” together:

μLU∗(θL) + μH U∗(θH ) = v0 and U∗(θL) = U∗(θH ) + I

gives

U∗(θL) = v0 + μH I and U∗(θH ) = v0 − μLI (16)

Now, U∗(θi) = u∗(θi) + δv∗(θi). Choosing u(θi) automatically determines v(θi). Proceeding 
inductively, we have:

αjU
∗(θL|ht−1, θj ) + (1 − αj )U

∗(θH |ht−1, θj ) = v∗(θj |ht−1)

U∗(θL|ht−1, θj ) = U∗(θH |ht−1, θj ) + I (ht−1, θj )

Solving the two equation gives us

U∗(θL|ht−1, θj ) = v∗(θj |ht−1) + (1 − αj )I (ht−1, θj )

U∗(θH |ht−1, θj ) = v∗(θj |ht−1) − αj I (ht−1, θj )
(17)

Starting from promised utility v0 and choosing per period transfers optimally, equations (16) and 
(17) inductively define future expected and promised utilities. The proof of Proposition 3 then 
simply follows from this induction.

6.9. General IID model

We show how to solve the model with the independent types. Suppose that αL = 1 −αH = μL, 
then ηL = ηH by equation (15) implying that the optimal contract lives on a one-dimensional 
curve. To characterize the optimal contract, it suffices to have only one state variable, namely 
expected promised utility. Notice that Q∗

L = Q∗
H , then ∀w ≥ 0 define Q∗ by

Q∗(w) = max
z∈W

Q∗
j (z) s.t. w = μLzL + μH zH (18)

This definition is based on the problem (RF), the problem (RF0) is trivially modified. Impor-
tantly, that the value function in equation (18) solves the simpler Bellman equation (RF ′).

(RF ′) Q∗(w) = max〈zL,zH,q〉 μL

[
s(θL, qL) + δQ∗(zL)

]+ μH

[
s(θH , qH ) + δQ∗(zH )

]

48 In case (PK) is not binding, replace v0 with v in equation (16).
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subject to 〈u, z,q〉 ∈R6+, and

w = μL(uL + δzL) + μH (uH + δzH )

uL + δzL ≥ �θqH + uH + δzH

The problem (RF ′) inherits many properties of the original problem and it has a simpler 
structure. In particular, Q∗ is well-defined and unique in the space of continuous bounded 
functions. Let Qe = μLQe

L + μH Qe
H , then Q∗ ≤ Qe and Q∗ = Qe if and only if w ≥ we =

μLwe
L + μH we

H . In addition, Q∗ is continuously differentiable on (0, +∞) with a unbounded 
right derivative at 0 and strictly increasing, concave on (0, we).

Consider w ∈ (0, we). Given the shape of Q∗, it is easy to see that the constraints in the 
problem (RF ′) could be rewritten as 0 ≤ δzH = w − μH �θqH and 0 ≤ δzL ≤ w + μL�θqH . 
This implies that 0 < zH < zL ≤ we and there exists wliq ∈ (0, we) such that zL = we if and 
only if w ≥ wliq . Finally, zH is strictly increasing on (0, we), zL is also strictly increasing on 
(0, wliq) and 0 < qH < qe(θH ) is strictly increasing on (0, we).

6.10. Sufficiency conditions and global optimality

We say that the first-order approach is valid if the solution to (RP∗) defined in Section 3 is 
incentive compatible, that is the high cost type or “upward” incentive constraints do not bind at 
the optimum. In the two period model discussed in Section 3.1 the “upward” incentive constraint, 
ICH , never binds. It is possible, however as we argue largely implausible that the “upward” 
incentive constraint may bind. In a nutshell, the measure of parameters for which we need to add 
the “upward” incentive constraint to the relaxed problem after some history is very small and 
therefore the economic message delivered by our solution worth consideration.

After any history ht−1, using the set of binding constraints in (RP∗), the “upward” incentive 
constraint and the cash-strapped constraint can respectively be expressed as:

ICH (ht−1) : qe(θL) +
∞∑

s=1

δs(αL − αH )sq(θH |ht−1, θL, θs−1
H )

≥
∞∑

s=0

δs(αL − αH )sq(θH |ht−1, θs
H )

CL(ht−1) :
∞∑

s=0

δsasq(θH |ht−1, θs
H ) ≥

∞∑
s=1

δsasq(θH |ht−1, θL, θs−1
H )

where as = P (θt+s = θL|θt = θL) = 1
1−αL+αH

{αH + (1 − αL)(αL − αH )s}.
First, we document that in the neighborhood of both iid types and perfect persistence, “up-

ward” incentive constraints can be safely ignored. Recollect that � = {�,μ,αL,αH δ, v0} is the 
entire set of parameters.

Claim 7. For any � \ {αL, αH }, the first-order approach is valid as for αL = αH and αH = 0.

Proof. ICH (ht−1) trivially holds when αL = αH , and for αH = 0, CL(ht−1) implies
ICH (ht−1). �

Second, we enlist sufficiency conditions that ensure that the first-order optimal contract is 
globally optimal. The primary motivation behind them is the following. When CL(ht−1) is 
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Fig. 8. Numerical examples depicting the shell and the region where RP∗ is valid.

slack, q(θH |ht−1, θL, θs−1
H ) are efficient for all s ≥ 1, therefore, ICH (ht−1) necessarily holds. 

When does CL(ht−1) bind? It binds when quantities on the left hand side of CL(ht−1), that is 
q(θH |ht−1, θs

H ) for s ≥ 0, are highly distorted owing to the interaction of binding incentive and 
cash-strapped constraints in previous periods. But, it is precisely when these quantities are highly 
distorted that it is easy for ICH (ht−1) to be satisfied for they appear on the right hand side of the 
constraint. Combining the efficient and inefficient regions, the measure of parameters for which 
the “upward” incentive constraint may bind after some history is quite small.

Claim 8. The first-order approach is valid if either of the following condition holds.

(S1) : qe(θH )
1

1 − δ(αL − αH )
≤ qe(θL)

(S2) : αH qe(θH )

(
δ

1 − δ
− δ(αL − αH )

1 − δ(αL − αH )

)
≤ (1 − αL + αH )qe(θL)

Proof. (S2) is derived only from ICH (ht−1). To see (S1), note that ps ∝ αH + (1 − αL)(αL −
αH )s = (1 − αL + αH )(αL − αH )s + αH [1 − (αL − αH )s] and quantities are always dis-
torted downward. Use CL(ht−1), which binds, and plug into ICH (ht−1). Finally, bound 
q(θH |ht−1, θL, θs−1

H ) by qe(θH ) and q(θH |ht−1, θs
H ) by 0, because 1 − (αL − αH )s ≥ 0. �

Third, we have numerically calculated the optimal contract for a large range of parameters to 
show that the first-order approach is indeed valid. The code for these numerical simulations has 
been made available online to test any combination of parameter values.49 Two such examples 
are presented in Fig. 8. The shaded region is the recursive domain for the inefficient contract 
(easy to see that the efficient contract is first-order optimal). The darkly shaded region is the set 
of expected utility vectors for which the “upward” constraint is slack at the optimum. The shell, 

49 We have used the parametric setting: V (q) = 10
√

q , δ = 0.8, θL = 3, θH = 4, v0 = 0. The code is available on 
request.
39



I. Krasikov and R. Lamba Journal of Economic Theory 193 (2021) 105196
wherein the optimal contract resides, lies within the darker shaded area. Hence the first-order 
approach is valid.

6.11. Introducing termination

Suppose that at the start of every period the principal can terminate the contract with some 
probability say λ. Upon termination, the principal gets a scrap value � and the agent gets his 
outside option which has been normalized to zero. If the principal chooses to continue the rela-
tionship, then the new type is realized and reported by the agent in return for endogenous supply 
of quantity and payment. We first analyze the general Markov model stated, and then show that 
in special case of the iid model, which is analogous to the cash flow diversion model in Clementi 
and Hopenhayn (2006) and the dynamic screening model in Krishna et al. (2013), more results 
can be established.

As before, we study the problem recursively using a two-dimensional vector of promised 
utilities as a state variable. There are two recursive problems to deal with: Let Q̂∗

j (w) be the 
maximal surplus the principal can achieve before termination and Q∗

j (w) be the same value 
upon continuation.

The former problem where the principal has to decide whether to terminate or not reads as 
follows:

Q̂∗
j (w) = max

λ∈[0,1] λ� + (1 − λ)Q∗
j

(
w

1 − λ

)
where λ is the probability of termination of the contract. The latter problem is explored separately 
for the Markov model and the iid model, where as expected, the iid model allows for a us more 
precise characterization.

General Markov model. The problem is exactly the same as (RF), but Q∗
j (zj) is replaced 

on the right hand side of the objective by Q̂∗
j (zj) for j = L, H :

Q∗
j (w) = max〈zL,zH,q〉 αj

[
s(θL, qL) + δQ̂∗

L(zL)
]+ (1 − αj )

[
s(θH , qH ) + δQ̂∗

H (zH)
]

subject to 〈zL, zH,q〉 ∈ W 2 ×R2+, and

wL − wH ≥ �θqH + δ(2α − 1)(zHL − zHH )

wL ≥ δ
[
αzLL + (1 − α)zLH

]
wH ≥ δ

[
(1 − α)zHL + αzHH

]
As before the problem at t = 1 will be different and analogous to (RF0).

We suppose that the termination payoff is not too large, so the termination is inefficient absent 
information frictions: � < Qe

j for j = L, H , where

Qe
j = αj

[
s(θL, qe(θL)) + δQe

L

]+ (1 − αj )
[
s(θH , qe(θH )) + δQe

H

]
Because of this assumption the scrap value is not too large, the efficient set remains the same as 
before, when the model does not have termination:

E =
{

w ∈R2+ : wL ≥ wH + �θqe(θH )
,wH ≥ 0

}

1 − δ(αL − αH )
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It can be show, as before, that E is an absorbing set. Moreover, the value function Q∗ posses 
exactly the same properties as the earlier model, namely Q∗ is well-defined, strictly concave, 

strictly increasing on 
[
0,

μL�θqe(θH )
1−δ

]
and it is constant on E. Finally, it is continuously differ-

entiable with lim
w↓0

DQ∗(w).

The principal’s decision of whether to terminate or not is summarized in the following propo-
sition.

Proposition 5. Fix the expected utility of the two types to be wL > wH > 0, and let r = wL

wH
. 

There exists a unique value v̂j (r) ≥ 0 such that

(a) the contract is continued with probability one whenever wH ≥ v̂j (r);
(b) the contract is continued with probability wH

v̂j (r)
whenever wH ≤ v̂j (r).

Proof. Rewrite the problem as

Q̂∗
j (w) = max

v≥wH

(wH

v

)
� +

(
1 − wH

v

)
Q∗

j (rv, v)

The FOC is as follows:

� − Q∗
j (rv, v) − (rv, v) · D∗

j (rv, v)

{
= 0, v > wH

≤ 0, v = wH

Concavity of Q∗
J implies that the function v 
→ � − Q∗

j (rv, v) − (rv, v) · D∗
j (rv, v) is non-

increasing for any r ∈ (1, ∞). Moreover, for sufficiently large v, (rv, v) ∈ E, thus the FOC 
holds as “<”. So, there exists unique v̂j (r) ≥ 0 such that{

� − Q∗
j (v̂j (r)) + (

rv̂j (r), v̂j (r)
) · DQ∗

j

(
rv̂j (r), v̂j (r)

)= 0, v̂j (r) > 0

� − Q∗
j (v̂j (r)) ≤ 0, v̂j (r) = 0

Then, wH = (1 − λ) max{wH , v̂j (r)} which concludes the proof. �
Proposition 5 establishes that a simple termination policy is in fact optimal. For r wH ≤ v̂j (r), 

the contract is either termination or it is continued with the promised utility of v̂j (r), and the 
exact mixing probability is chosen to satisfy the promise-keeping constraint. The “slope” of the 
expected utilities, the line connecting 0 and w, essentially pins down the threshold v̂j (r) for wH

above which the contract is continued with probability one, and below which it is terminated 
with a unique probability.

The uniqueness of the termination threshold and the fact of efficiency as an absorbing 
state, in conjunction with the martingale convergence theorem, gives the following long-term 
termination-efficiency result.

Proposition 6. Consider the model with correlated types and possibility of termination. Then the 
optimal contract is almost surely either terminated or becomes efficient.

Proof. Proposition 5 implies that the contract is not terminated whenever wH > v̂j (wL/wH ) for 
j = L, H , thus Q̂∗

j (w) = Q∗
j (w). Then, by the same reasoning as in the model without termina-

tion:
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(DL + DH )Q̂∗
j (w) = αj (DL + DH )Q̂∗

L(zL) + (1 − αj )(DL + DH )Q̂∗
H (zH ) j = L,H

Conditional on no termination, the process of promised utilities is bounded from below. More-
over, (DL +QH )Q̂∗

j is a non-negative martingale whenever termination is suboptimal. Conclude 

that (DL +QH )Q̂∗
j must converge almost surely (provided the contract is not terminated). And, a 

point of convergence to must be such that (DL +QH )Q̂∗
j = 0, that is the contract is efficient. �

IID model. The value function before the decision of termination is taken reads the same as 
before:

Q̂∗(w) = max
λ∈[0,1] λ� + (1 − λ)Q∗

(
w

1 − λ

)
The latter problem to be solved upon the decision to continue the contract is now simpler than 
before:

Q∗(w) = max〈z,q〉 μL

[
s(θL, qL) + δQ̂∗(zL)

]+ μH

[
s(θH , qH ) + δQ̂∗(zH )

]
subject to 〈z,q〉 ∈R4+, and

w = μL(uL + δzL) + μH (uH + δzH )

uL + δzL ≥ �θqH + uH + δzH

As before, to make the problem interesting we suppose that termination is inefficient when 
information frictions are “small”: � < lim

w→∞Q∗(w), or in terms of primitives:

� <
μLs(θL, qe(θL)) + μH s(θH , qe(θH ))

1 − δ

This ensures that the efficiency set is the same as before in the iid model without termination

E =
[
μL�θqe(θH )

1 − δ
,∞

)
Our first result characterizes the optimal termination policy.

Proposition 7. There exists a unique value v̂ ∈
[
0,

μL�θqe(θH )
1−δ

)
such that

1. the contract is continued with probability one whenever w ≥ v̂;
2. the contract is continued with probability w

v̂
whenever w ≤ v̂.

Proof. The first-order condition with respect to λ can be written as:

� − Q∗
(

w

1 − λ

)
+
(

w

1 − λ

)
DQ∗

(
w

1 − λ

){= 0, λ ∈ (0,1)

≤ 0, λ = 0

Moreover, concavity of Q∗ implies that this FOC is sufficient and determines the unique value 
of λ. Our assumption on the level of � implies that the FOC holds as “<” whenever λ is large 
enough. So, there exists unique v̂ satisfying the following:
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{
� − Q∗(v̂) + v̂DQ∗(v̂) = 0, v̂ > 0

� − Q∗(0) ≤ 0, v̂ = 0

Then, w = (1 − λ) max{w, v̂} which concludes the proof. �
Next, we summarize dynamic properties of the optimum.

Proposition 8. Consider the iid model with the possibility of termination, then the optimal con-
tract satisfies the following properties:

1. Efficiency is achieved above a threshold and it is an absorbing set: For w ∈ E ⇒ zL, zH ∈ E.
2. Promised utility increases after a low cost and decreases after a high cost: w /∈ E ⇒ zL >

w > zH ;
3. Almost surely, the contract is either terminated or becomes efficient.

Proof. Part (1) follows from the structure of E.
First show we Part (2). The incentive constraint must bind and uH = 0, thus w = μL�θqH +

δzH and δzL ≥ w+μH �θqH . It is immediate that zL > w. We shall show that zH < w whenever 
w <

μL�θqe(θH )
1−δ

. By the Envelope theorem applied to Q̂∗:

DQ̂∗(w) = DQ∗ (max{v̂,w})≤ DQ∗(w)

where the last inequality follows from concavity of Q∗. By the Envelope theorem applied to Q∗:

DQ∗(w) = μLDQ̂∗(zL) + μH DQ̂∗(zH )

Combining these two results, obtain that

DQ∗(w) ≤ μLDQ̂∗(zL) + μH DQ̂∗(zH )

Strict concavity of Q∗ and zL > w implies that zH < w.
Finally, we argue that the contract must either converge to efficiency or get terminated, estab-

lishing Part (3). By Proposition 7, there is no termination whenever w > v̂, thus Q̂∗(w) = Q∗(w), 
and

DQ̂∗(w) = μLDQ̂∗(zL) + μH DQ̂∗(zH )

Since the promised utility upon continuation is at least ŵ and the derivate of Q̂∗ is a non-
negative martingale whenever w ≥ v̂, the process of promised utilities must converge almost 
surely (conditional on no termination). It is routine to verify it must converge to a point in E, that 
is DQ̂∗ = 0. �

The propositions in this subsection can be seen can be seen as generalizations of corre-
sponding results in the iid cash flow diversion model in Clementi and Hopenhayn (2006). The 
optimal allocation rule, as noted in Proposition 6 in Clementi and Hopenhayn (2006), looses its 
monotonicity properties upon the introduction of termination. In fact, we numerically find the 
allocation is decreasing in the recursive domain close to the termination threshold and increasing 
close to the efficiency region. For low value of expected utility, instead of simply decreasing the 
allocation on the realization of a “bad shock” the principal prefers to simultaneously increase the 
allocation and the probability of termination.
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6.12. The model in continuous time

We show that in “continuous time”, except points 5 and 8, all other properties hold in the 
continuous time model as well. The two exceptions arise because there is no notion of a “time 
period” in continuous time, so the liquidity and efficiency regions are synonymous.

Time here in continuous and we let θt follow a continuous time Markov chain on � = {θL, θH }
with transition rates 0 < λL, λH < ∞, respectively:

P (θt+dt = θi |θt = θi) = 1 − λidt + o(dt) for i = L,H

For each t and a history up to this time (ht−, θt ), a contract specifies agent’s instantaneous 
utility u(θt |ht−) ≥ 0 and a quantity q(θt |ht−) ≥ 0. A contract is assumed to be progressively 
measurable with respect to the natural filtration. In addition, it is assumed that the process of 
promised utilities defined as

U(θt |ht−) = Et

⎡
⎣ +∞∫

t

e−r(s−t)u(hs)ds

⎤
⎦

is uniformly bounded.50 Agent’s strategy is an adapted cadlag process taking values in � with at 
most finitely many jumps in any finite time interval. These structural properties are required for 
the principal to be not able to detect a deviation from truth-telling.

Following Williams (2011) we adopt the first order approach restricting agent’s strategy even 
further: the agent can not understate his costs.51 Then, it is with no loss of generality to consider 
only contracts delivering the efficient quantity to the cost-efficient type. And, it is with out loss of 
generality to focus on contracts delivering a downward distorted quantity to the cost-inefficient 
type.

By the revelation principle, it suffices to optimize over the incentive compatible contracts. 
Given uniform-boundedness of U , a contract is incentive compatible if and only if the agent 
can not gain by misreporting only for a short time interval and being truthful afterwards. As 
in the main text, let wj = U(θj |ht−) and zjk = U(θk|ht−, θ [t,t+dt)

j ) for j, k = L, H . Then, the 
incentive compatibility simply says that for any small dt > 0,

wL − wH ≥ �θqH dt + (1 − rdt)[1 − (λL + λH )dt](zHL − zHH )

where qH is an average quantity from (ht−, θH ) to 
(
ht−, θ [t,t+dt)

H

)
. Uniform boundedness guar-

antees that qH is well-defined.
Two more constraints need to be imposed, because the agent is cash-strapped. For any small 

dt > 0,

wL ≤ (1 − rdt)[(1 − λLdt)zLL + λLdtzLH ]
wH ≤ (1 − rdt)[(1 − λH dt)zHH + λH dtzHL]

It immediately follows that, as in the discrete time case, the recursive domain is W = R2+ and 
the efficiency set is E = {w ∈ W : wL − wH ≥ κ and wH ≥ we

H } such that

50 U is well-defined because of our measurability assumption and non-negativity of the instantaneous utility process. 
Moreover, the uniform boundedness assumption can be weakened without affecting our results.
51 The agent can not claim to have a transition to θL when no transition happened and the agent has to announce a 
transition to θH if one happened.
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we
L − we

H ≥ κ = lim
dt→0

�θqe
Ldt

1 − (1 − rdt)[1 − (λ + λ)dt] = �θqe
L

r + λL + λH

we
H = lim

dt→0

(1 − rdt)λ

r
κ = �θλLqe

L

r(r + λL + λH )

So, we have established continuous time analogs of Claims 1 and 2.
Let żjk = żjk−wj

dt
∈ [−∞, +∞] for j, k = L, H .52 Since żjk(dt)2 →dt→0 0 almost surely by 

uniform boundedness, we can rewrite our constraints in the following way:

żLL ≤ (λL + r)wL − λLwH (19)

żHH ≤ (λH + r)wH − λH wL (20)

żHL − żHH ≤ (λL + λH + r)(wL − wH ) − �θqH (21)

Now, we set up our recursive problem using w as state variables. Let QH(w) be the expected 
surplus if the “last” type was θH and QL(wL) be the expected surplus if the “last” type was θL.53

For now, assume that these functions are continuously differentiable, then the HJB equations are 
as it follows:

(λL + r)QL(wL) = s(θL, qe
L) + max

żLL,wH ∈[0,wL]

{
Q′

L(wL)żLL + λLQH (w)
}

s.t. (19)

(λH + r)QH (w) = λH QL(wL) + max
ż,qH ∈[0,qe

H ]

{
s(θH , qH ) + DQL(w) · żH

}
s.t. (20) and (21)

We shall suppose that the optimal contract exists. We also suppose that both value functions 
satisfy all the properties which have been established in the discrete case, see Claim 4. For sim-
plicity, we assume each value function is twice differentiable.

From the HJB equation, Q′
L(wL) ≥ 0, DLQH (w) ≥ 0 and DLQH (w) + DH QH (w) ≥ 0. It 

is easy to see that Q′
L(wL) > 0 if and only if wL < we

L by concavity and supermodularity. And, 
DQH (w) = 0 if and only if w ∈ E. So, for w /∈ E both cash-strapped constraint must bind.54 We 
will look at the set H which is defined as in Claim 4:

H = {w ∈ int (W) : QL(wL) > 0 and DQH (w) � 0} ⊆ (0,we
L) × (0,we

H )

On this set, Q′′
L < 0 and DjjQH < 0 for j = L, H , the incentive constraint is binding.

First, we establish the analogue of Claim 5. The shell can be identified with B ⊆ W ∩
(0, we

L) × (0, we
H ) ⊆ H such that

wL ∈ (0,we
L) and wH

H (wL) ≤ wH ≤ wL
H (wL)

where DH QH (wL, wL
H (wL)) = Q′

L(wL) and DLQH (wL, wH
H (wL)) = 0. These two functions 

are inverses of wi
L defined in the discrete case, so they have the same properties. To be spe-

cific, they continuously connect 0 and we and they are strictly increasing. Moreover, wH
H (wL) <

wL
H (wL) on B . To see this differentiate the former HJB equation to obtain that

52 żjk ± ∞ stays for a discrete jump.
53 QL depends only on wL , because z′

LH
is unrestricted. This means that wH can be freely adjusted discontinuously 

when there is a switch from the θH to θL .
54 In Equation (19), wH is a promised utility after an adjustment.
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λLDLQH (wL,wL
H (wL)) = −Q′′

L(wL)żLL > 0 = DLQH (wL,wH
H (wL))

Next, we show that the shell lies above the line connecting 0 and we . Differentiate the second 
HJB equation

λH [DH QH (w) − Q′
L(wL)] = D(DLQH )(w) · żH

λH DLQH (w) = D(DH QH )(w) · żH

(22)

For any point on the aforementioned line: wH

wL
= we

H

we
H +κ

, it holds that żHH = 0. Equation (22)

implies żHL > 0, hence DHQH (w) < Q′
L(wL) = DH QH (wL, wL

H (wL)).
Now, we establish the analogue of Claim 6. We argue that both boundaries of the shell are 

reflecting which implies that the shell is absorbing. The claim is trivial for wH
H and needs to 

be shown only for wL
H . To be concrete, we need to show that żHH ≤ (wL

H )′(wL)żHL. By the 
implicit function theorem

(wL
H )′(wL) = Q′′

L(wL) − DLH QH (wL,wL
H (wL))

DHH QH (wL,wL
H (wL))

>
DHH QH (wL,wL

H (wL))

DHH QH (wL,wL
H (wL))

Using equation (22), one can obtain the desired result.
We claim that following monotonicity properties are true for the optimal contract in the 

interior of the shell: q̇H < 0 and żH < 0 < żL where żLH = (wL
H )′(wL)żLL. First of all, 

żHH < 0 < żLL holds trivially in the shell and żLH > 0 as (wL
H )′(wL) > 0. And, from the second 

HJB equation, Dqs(θH , qH ) = �θDLQH (w). Totally differentiating with respect to time:

d

dt
DLQH (w) = DQH (w) · żL = λH [DH QH (w) − Q′

L(wL)] > 0

implying that q̇H < 0 and żHL < 0.
Also, the distortions are muted after θL: qH (w) ≤ qH (wL, wL

H (wL)). To see this, notice that 
in the shell wH ≤ wL

H (wL). Then, the first-order condition Dqs(θH , qH ) = �θDLQH (w) and 
supermodularity of QH implies the claim. This establishes the continuous time analogue of 
Claim 6.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2021 .105196.
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